
Notes on Clifford Algebras

Arkadiusz Jadczyk

April 6, 2019
v1.0j

Contents

1 Introduction 2
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Tensor algebra . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . 6
1.1.5 Diagonalization of symmetric bilinear forms . . . . . . 9

1.2 Clifford algebras - definition . . . . . . . . . . . . . . . . . . . 11
1.2.1 Universal property . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Main involution α and main anti-involution τ . . . . . 12
1.2.3 Anti-derivations . . . . . . . . . . . . . . . . . . . . . . 14
1.2.4 Bourbaki’s application λF . . . . . . . . . . . . . . . . 15

1.3 Graded structure of a Clifford algebra . . . . . . . . . . . . . . 18
1.3.1 The center Z(q) of Cl(q) . . . . . . . . . . . . . . . . . 19
1.3.2 The algebras Clp,q,r in the real case (c.f. [18]) . . . . . 21

1.4 Complex Clifford algebras . . . . . . . . . . . . . . . . . . . . 36
1.4.1 Matrix representation of the Clifford algebras ClCn . . . . 36
1.4.2 The trace and the bilinear form on Cl(q) . . . . . . . . 38

1.5 The Clifford group . . . . . . . . . . . . . . . . . . . . . . . . 40
1.5.1 The spinor norm . . . . . . . . . . . . . . . . . . . . . 42
1.5.2 Example |Spin(3) ' SU(2) . . . . . . . . . . . . . . . . 43
1.5.3 Example: Spin and Pin for signatures (3, 1) and (1, 3) 44

2 Clifford algebra on multivectors 48
2.1 The standard case of Cl(q) . . . . . . . . . . . . . . . . . . . . 50
2.2 Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3 The Dirac operator . . . . . . . . . . . . . . . . . . . . . . . . 54

1



3 Deformations 55
3.1 The additive group of bilinear forms Bil(M) . . . . . . . . . . 55
3.2 The bundle of Clifford algebras . . . . . . . . . . . . . . . . . 57
3.3 Automorphisms and deformations in the bundle of Clifford

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Abstract

My notes while studying general Clifford algebras

1 Introduction

1.1 Preliminaries

A reasonably general formulation of the theory of Clifford algebras starts
with the definition of the Clifford algebra of a module over a ring, equipped
with a quadratic form. A not necessarily symmetric and, in general, degen-
erate, bilinear form can also appear within this theory. Later on modules are
replaced by vector spaces over a field of characteristic zero. We start with
the definitions, where we follow the references [6, 15]

Definition 1.1 (Ring). A ring is a set R with two laws of composition, one
denoted additively and the other multiplicatively, which satisfy the following
conditions:

1. The elements of R form a commutative group under addition;

2. The elements of R form a monoid under multiplication;

3. If a, b, c are elements of R, we have

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc.

That R is a monoid under multiplication means that

1. (ab)c = a(bc) for all a, b, c ∈ R (associativity),

2. There is an element 1 ∈ R such that 1a = a1 = a for all a in R (that
is 1 is the multiplicative identity (neutral element).

A ring containing at least two elements, in which every nonzero element a has
a multiplicative inverse a−1 is called a division ring (sometimes also called a
“skew field”). A commutative division ring is called a field.
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Definition 1.2 (Characteristic). Let R be a ring with unit element 1. The
characteristic of R is the smallest positive number n such that

1 + ...+ 1︸ ︷︷ ︸
n summands

= 0.

If such a number does not exist, the characteristic is defined to be 0.

We notice that the above condition is equivalent to

α + ...+ α︸ ︷︷ ︸
n summands

= 0

for every 0 6= α ∈ R.
In applications to Clifford algebras R will be always assumed to be

commutative. Ultimately R will become the field of real or of complex
numbers, but for a while it costs us nothing to be more general. The notation
and definitions below follow closely those in Ref. [7].

Definition 1.3 (Module). Let R be a commutative ring. A module over R
(in short R-module) is a set M such that

1. M has a structure of an additive group,

2. For every α ∈ R, a ∈ M an element αa ∈ M called scalar multiple is
defined, and we have

i) α(x+ y) = αx+ αy,

ii) (α + β)x = αx+ βx,

iii) α(βx) = (αβ)x,

iv) 1 · x = x.

Remark 1.4. Normally one would distinguish between left modules and right
modules, where multiplication by scalars (element of the ring R) is defined
from the left or from the right. But since we will assume that R is com-
mutative, there is no necessity to distinguish between left and right modules.
Indeed, in a left module, multiplying x first by α, then by beta, we would get
βαx, thus getting x multiplied by βα. In a right module doing the same we
would get xαβ, thus x multiplied by αβ. In a commutative module αβ = βα,
therefore it does not matter whether we write the multiplication on the left
or on the right.
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1.1.1 Vector spaces

Definition 1.5 (Vector space). If R is a division ring, then a module M
over R is called a vector space.

In general one would consider left and right vector spaces, but since we
assume that R is commutative, it is not necessary to distinguish between the
two cases. In linear algebra one shows that every vector space has a basis,
possibly infinite, of linearly independent vectors. Moreover, every two bases
have the same cardinal number called the dimension of the vector space -
cf. e.g. [6, p. 103]. Every system of linearly independent vectors can be
extended to a basis.

In particular for every nonzero vector x ∈ M there exists a linear func-
tional f on the space - that is an element of the dual space M∗ - that takes
a nonzero value on this vector: f(x) 6= 0.

Clifford algebras are usually studied with a restriction to finite dimen-
sional vector spaces. But such a restriction is not necessary at the very
beginning, for the study of many important general properties of Clifford
algebra.

1.1.2 Algebras

Definition 1.6 (Associative algebra with identity called simply hereafter
algebra). An algebra A over R is a module over R with a multiplication
which makes A a ring and satisfying

α(xy) = (αx)y = x(αy), (x, y ∈ A, α ∈ R).

Notice that it follows from the definition above, the part where it is said
that A is a ring, that the algebra will be always assumed to contain a neutral
element, usually denoted as 1.

A subset B of an algebra A is called a subalgebra if for any x, y from B, α
in R, also αx, x+ y, xy are in B, and if B contains the unit 1 of A. A subset
S of an algebra A is called a set of generators if A is the smallest subalgebra
of A containing S. Notice that a subalgebra must automatically contain the
unit of A.

1.1.3 Tensor algebra

Definition 1.7 (Tensor algebra). Let M be a module over R. An algebra
T is called a tensor algebra over M (or “of M”) if it satisfies the following
universal property
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1. T is an algebra containing M as a submodule, and it is generated by
M,

2. Every linear mapping λ of M into an algebra A over R, can be extended
to a homomorphism θ of T into A.

Note 1.8 (Chevalley’s construction of the tensor algebra). In all standard
textbooks, see e.g. [4, 7, 15], the above characterisation of the tensor algebra
of a module is always completed by a prove of its existence, i.e. by its con-
struction. Chevalley [7] does it in an original way, using the construction of
a free algebra as follows.

Step 1 First of all given any set {xi}i∈I indexed by an index i in some
indexing set I, we can construct an algebra in which this set is the set of
linearly and algebraically independent generators. The construction goes as
follows. We consider the set Σ of all finite sequences of elements of I. In Σ
we include also the empty sequence σ0 containing no elements from I. With
σ0 we associate the symbol ”1”. It will become the unit element of our algebra.
From theorems of linear algebra we know that there exists a module which has
a basis that is equipotent to the set Σ. In other words, there exists a module
F in which there is a basis that can be indexed by means of the elements of
the set Σ. Given an element σ ∈ Σ, that is a finite sequence of elements of
I we have σ = {i1, ..., in}. Let yσσ∈Σ be the basis in F. To define the algebra
multiplication in F we only need to specify the multiplication of the basis
elements. This is defined in a natural way as a juxtaposition yσyσ′ = yσσ′ .
At the end we can replace every symbol i with the corresponding element of
the set {xi}i∈I . In this way we obtain the free algebra with the set {xi}i∈I
as the set of generators. Notice that it follows automatically that the symbol
“1” becomes the unit of our algebra, as a juxtaposition of the empty set σ0

with any σ is σ.
Step 2 Let now M be a module. We will construct the tensor algebra

T (M) of M. First we consider M as a set, ignoring its module structure.
Then we build the free algebra F with M as the set of generators. And
now we take into account the existing module structure of M by dividing
F by an appropriate two sided ideal as follows. In F we have the algebra
structure introduced by its construction. In order to distinguish between the
linear operations within F from those within M we denote the addition and
subtraction in F by the symbols +̇ and −̇, and multiplication by scalars by
α · x. Thus, right now, in F we have, for instance, if x, y are in M , then
x + y ∈ M but, in general, x+̇y /∈ M, and also αx ∈ M but α · x /∈ M. To
build the tensor algebra over M we need, for x, y ∈M, to have x+̇y = x+ y
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and α · x = αx. To this end let S be the set of all elements of the forms:

x+̇y−̇(x+ y), (x, y ∈M),

and
α · x−̇(αx) (α ∈ R, x ∈M),

and let T be the two sided ideal in F generated by S. The tensor algebra
T (M) of M is then defined as the quotient F/T . Chevalley then shows that
T (M) so constructed has the universal property described in Definition 1.7

Let M be a module over R and let T (M) be its tensor algebra. The mul-
tiplication within the algebra T (M) inherited from the algebra F is denoted
⊗. Since the ideal T is generated by elements homogeneous of grade 1 in M ,
the resulting algebra T (M) is also graded. We have

T (M) =
∞⊕
p=0

T pM, (1)

where
T pM = M⊗p = M ⊗ ...⊗M︸ ︷︷ ︸

p factors

. (2)

It is understood here that T 0M = R and T 1M = M. The tensor algebra is a
graded and associative (but non-commutative) algebra, with unit 1 ∈ R. The
fact that T (M) is a graded algebra means that for any x ∈ T pM, y ∈ T qM
the product xy is in T p+qM for all p, q = 0, 1,· · ·. Sometimes it is convenient
to consider T pM for p < 0 as consisting of the zero vector only.

1.1.4 Quadratic forms

Given a module M over a ring R we will define now quadratic form on M .
There are two definitions possible, one more general than the other one if
general rings with any characteristic are being considered. Bourbaki [4] and
Chevalley [7] use the more general definition adapted to a general case. Below
I will give an example of how careful one has to be in a general case, I will
closely follow the monograph by Helmstetter [10].

Definition 1.9 (Quadratic form I). Let M be a module over a commutative
ring R. A mapping q : M → R is called a quadratic form on M if the
following conditions are satisfied:

1.
q(αx) = α2 q(x) for all α ∈ R, x ∈M, (3)
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2. There exists a bilinear form Φ(x, y) on M such that for all x, y ∈ M
we have

Φ(x, y) = q(x+ y)− q(x)− q(y). (4)

We say that the bilinear form Φ is associated with the quadratic form q.
Sometimes Φ is also called the polar form of q. It follows from its very
definition that Φ is symmetric: Φ(x, y) = Φ(y, x) for all x, y ∈M.

We can combine Eqs. (4) and (3) into:

q(αx+ βy) = α2q(x) + β2q(y) + αβΦ(x, y). (5)

The short discussion of consequences given below is taken directly from
Ref. [10].

Note 1.10. From the very definition we find that

Φ(x, x) = q(2x)− 2q(x) = 4q(x)− 2q(x) = 2q(x). (6)

It follows that if R is of characteristic 2, then Φ(x, x) = 0 for all x ∈ R.
Such a form is called alternate. In that case, since also Φ(x+ y, x+ y) = 0,
we have that

0 = Φ(x+ y, x+ y) = Φ(x, x) + Φ(x, y) + Φ(y, x) + Φ(y, y)

= Φ(x, y) + Φ(y, x),
(7)

so that in this case the form Φ is antisymmetric Φ(x, y) = −Φ(y, x).

Getting back to a general characteristic, we may also notice at this point
that if the mapping x 7→ 2x is surjective in M, then the form Φ determines
q. Indeed, setting y = 2x we get q(y) = q(2x) = 4q(x) = 2Φ(x, x). We also
observe that the quadratic form q is determined by the associated bilinear
form Φ when the mapping α 7→ 2α is injective in R, in other words if multi-
plication by 1

2
makes sense in R. In that case we can solve Eq. (6) to obtain

q(x) = 1
2
Φ(x, x).

In applications to Clifford algebras, unless we are interested in very special
cases like characteristic 2, it is more convenient to use a little bit different
definition of a quadratic form, as given, for instance, in Ref. [16, p. 199]:

Definition 1.11 (Quadratic form II). Let M be a module over a commutative
ring R. A function q : M → R is called a quadratic form if there exists a
bilinear form F : M ×M → R such that

q(x) = F (x, x). (8)
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It follows from this last definition that the condition in Eq.(3) is then
automatically satisfied, and also the condition in Eq.(4) is automatically
satisfied with

Φ(x, y) = F (x, y) + F (y, x). (9)

Remark 1.12. If the module M admits a basis (in particular, when it is a
vector space), then given a quadratic form q as in Def. 1.9 one can always
construct a bilinear form F (in general a non symmetric one) such that
q(x) = F (x, x) (cf. eg. Ref. [5, Proposition 2, p. 55]). It is instructive to
understand the idea of the proof (taken from Ref. [5, Proposition 2, p. 55]).
1 Of course if the field R admits division by 2, we can use Eq. (6) and simply
set F (x, y) = 1

2
Φ(x, y). In particular the rest of this remark is irrelevant for

vectors spaces over reals or complex number fields
Let q be a quadratic form on a vector space M , and let Φ be the associated

bilinear form. We start with noticing that M, being a vector space, has a basis
{ei}i∈I . By the well-ordering theorem every set can be well ordered, and we
will assume that the index set I is well ordered. Since {ei}i∈I is a basis, every
bilinear form F is uniquely determined by the coefficients fij, i, j ∈ I. Let Φ
be the bilinear form associated to q. We first observe that if {αi}i∈I is any
family of elements of R with only a finite number of αi 6= 0, then

q(
∑
i

αiei) =
∑
i

α2
i q(ei) +

∑
{i,j}

αiαjΦ(ei, ej), (10)

where the last sum is over all two-element subsets of I. 2

It is understood that each sum is over a finite set determined by non-zero
αi-s. We prove Eq. (10) by induction with respect to the number n of nonzero
coefficients αi. If there are only two nonzero coefficients, then (10) follows
from Eq. (5), i.e. from the definition of the quadratic form 1.9. Assume now
that Eq. (10) holds for subsets {i1, ..., in} of n non-zero coefficients αi, and
let us add another non-zero coefficient αin+1 . Then

q(αi1ei1 + ...+ αin+1ein+1) = q ((αi1ei1 + ...+ αinein) + αin+1ein+1)

= q(αi1ei1 + ...+αinein) + q(αin+1ein+1) + Φ(αi1ei1 + ...+αinein , αin+1ein+1).

Using now the quadratic form property, in particular for the sum of two
elements, the assumed property for the sum of n elements, as well as linearity

1The proof can be also found in Ref. [I.2.2, p. 76][7], but with unnecessary assumption
that M is finite dimensional.

2Thus if ai1 and ai2 are nonzero, with i1 < i2, then only Φ(ei1 , ei2) enters the sum, and
not Φ(ei2 , ei1) because {i2, i1} is the same subset as {i1, i2}
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of Φ in the first argument leads to the desired result. Nowhere we needed to
assume that the basis {ei}i∈I is finite.

Given a quadratic form q we can now define a bilinear form F satisfying
q(x) = F (x, x) by defining its coefficients fij, i, j ∈ I, as follows:

fii = q(ei), (11)

fij = Φ(ei, ej), i < j, (12)

fij = 0, i > j. (13)

We now check that q(x) = F (x, x) for every x in M. If x ∈ M then x =∑
i αiei, with only a finite number of non-zero terms in the sum. Therefore,

using Eq. (10) we have

q(x) =
∑
i

α2
i q(ei) +

∑
i<j

αiαjΦ(ei, ej). (14)

On the other hand, from bilinearity of F we have

F (x, x) = F (
∑
i

αiei,
∑
j

αjej) =
∑
i

α2
i fii +

∑
i 6=j

αiαjfij = q(x)

from the definition of the coefficients fij above (because fij = 0 for i > j) .

1.1.5 Diagonalization of symmetric bilinear forms

When studying Clifford algebras it is often convenient to use particularly nice
properties of orthogonal bases for symmetric bilinear forms. Such a basis al-
ways exists for finite dimensional vector spaces over the field of characteristic
different from 2, and it is instructive to look at the proof of the proposition
below (taken from Ref. ([9, p. 362]), cf. also ([12]).

Proposition 1.13. Let M be a finite dimensional vector space over a field
of characteristic 6= 2 and let F be a symmetric bilinear form on M. Then
there exists a basis {ei}, (i = 1, ..., n) in M consisting of mutually orthogonal
vectors: F (ei, ej) = 0 for i 6= j. In other words F is diagonalizable.

Proof. The proof is by induction with respect to the dimension n of the
vector space. The statement is trivially true for n = 1, since in this case
the set i 6= j is empty. Suppose the statement holds for vector spaces of
dimension n− 1 or less. We will show that then it holds also for dimension
n. For this we will need a little auxiliary results, and it is in the proof of this
auxiliary result we will use the fact that the characteristic is 6= 2. Namely
we first need to show that if the symmetric bilinear form is nontrivial, i.e.
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F 6= 0, then there always exists a vector x such that F (x, x) 6= 0. The
fact that F 6= 0 is equivalent to saying that there exist vectors u, v for
which F (u, v) 6= 0. If F (u, u) 6= 0 or F (v, v) 6= 0, we are done, but if
F (u, u) = 0 and F (v, v) = 0, then x = u + v does the job. Indeed then
F (x, x) = F (u, u) + F (v, v) + F (u, v) + F (v, u) = 2F (u, v) since we have
assumed that F is symmetric. But, since we also assume that the filed is not
of characteristic 2, then 2 6= 0, and therefore F (x, x) 6= 0.

Let us return now to the proof of the main statement, assuming M n-
dimensional. If F = 0 any basis does the job. Let us therefore assume
that F 6= 0. Then, as we have just shown, there exists a vector x such that
F (x, x) 6= 0. Evidently x 6= 0. Then we define W as the following subspace
of M (the orthogonal complement of x).

W = {w ∈M : F (x,w) = 0}. (15)

Evidently W is a vector space that does not contain x. Moreover we have
that every vector v ∈ M can be uniquely written in the form v = w + αx,
where w ∈ W and α is a scalar. For if v is in W we set α = 0 and if v /∈ W ,
then F (x, v) 6= 0, and it is enough to set α = F (x, v)/F (x, x) and define
w = v − αx. Then automatically F (w, x) = 0 i.e. w ∈ W, and v = w + αx.

If {ei} is a basis in W , then {ei} ∪ {x} is a basis in M. Therefore W
is n − 1-dimensional and, by the induction hypothesis, there exists a basis
e1, ..., en−1 in W diagonalizing F . But then ei together with x is a basis in
M , and it is diagonalizing F , since ei ∈ W and therefore, by the definition
of W , F (x, ei) = 0 for i = 1, ..., n.

1.1.5.1 Degenerate and nondegenerate bilinear forms
With the assumptions and notation as above, let F be a bilinear form on M,
but not necessarily symmetric. When F is not necessarily symmetric, there
are two possible definitions of a degenerate bilinear form:

(i) There exists y ∈M, y 6= 0 such that F (x, y) = 0 ∀x ∈M ;

(ii) There exists x ∈M, x 6= 0 such that F (x, y) = 0∀y ∈M ;

But in fact the two conditions are equivalent, and each of them is equivalent
to the conditions that the matrix Fij = F (ei, ej) is not invertible.

Indeed (i) is equivalent to: there exists y ∈M, y 6= 0, such that F (ei, y) =
0 for all i = 1, ..., n. Let us write y =

∑n
j=1 y

jej. Then F (ei, y) = 0 can be

written as
∑n

j=1 F (ei, ej)y
j = 0, or, in matrix notation, Fy = 0, which is

another way of saying that the matrix F is not invertible. The condition
(ii) would lead to the same conclusion, but for the transposed matrix. But
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the matrix is invertible if and only if the transposed is invertible (inverse of
the transpose is the transpose of the inverse [4, p. 350]), which shows the
equivalence of (i) and (ii). The bilinear form that is not degenerate is called
nondegenerate.

Remark 1.14. We notice that a symmetric bilinear form F and an orthog-
onal basis ei, F is non-degenerate if and only if all the diagonal elements
F (ei, ei) are non-zero. In fact, if F is nondegenerate, then all F (ei, ei)
must be non zero, since if one of them vanishes, F (ei, ei) = 0, then this
ei is orthogonal to all vectors in M . Conversely, if F is degenerate and
there exists a non-zero x such that F (x, ei) = 0 for all i, then one of
the terms F (ei, ei) must be zero. Indeed writing x =

∑
j xjej we find that

0 = F (x, ei) =
∑

j xjF (ej, ei) = xiF (ei, ei), because of the orthogonality of
the basis. If one of the coefficients xi is non-zero, then F (ei, ei) = 0.

1.2 Clifford algebras - definition

Let q be a quadratic form on M (see Def. 1.9), and let J(q) be the two-
sided ideal in T (M) generated by elements of the form x⊗ x− q(x)1, where
x ∈M ⊂ T (M). The ideal J(q) consists of all finite sums of elements of the
form x1⊗. . .⊗xp⊗(x⊗x−q(x)1)⊗y1⊗. . .⊗yq, where x, x1, . . . , xp, y1, . . . , yq
are in M.

Definition 1.15 (Clifford algebra, cf. [7, p. 35]). With M and q as above the
quotient algebra Cl(q) = T (M)/J(q) is called the Clifford algebra associated
to M and q.

Denoting by πq : T (M) → Cl(q) the canonical mapping, πq(M) is a
submodule of Cl(q) that generates Cl(q) as an algebra. Moreover, for all
x ∈M we have

(πq(x))2 = q(x)1. (16)

From πq(x+ y)2− πq(x)2− πq(y)2 = q(x+ y)− q(x)− q(y) = Φ(x, y) we find
that

πq(x)πq(y) + πq(y)πq(x) = Φ(x, y). (17)

If M is a vector space, then the mapping x 7→ πq(x) is injective (which will
be shown later) and M can be identified with a linear subspace of Cl(q). In
general it needs not be so. The case of q = 0 is special. The Ideal J(q)
is then generated by homogeneous elements x ⊗ x and the algebra Cl(0) is
nothing but the exterior algebra Λ(M) of M. All homogeneous elements of
J(0) are then of at least the degree 2, therefore no non-zero element of M
can belong to this ideal. It follows that in this case the mapping x 7→ π(x)
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is an embedding and M can be always identified with the grade 1 subspace
of Cl(0).

1.2.1 Universal property

The Clifford algebra Cl(q) defined above is characterized by a universal prop-
erty analogous to the universal property characterizing the tensor algebra as
defined in Definition 1.7.

Theorem 1.16 (Cf. e.g. [7, Theorem 3.1, p. 36]). Assume that λ is a linear
mapping from M into an algebra A with the property that (λ(x))2 = q(x)1
for all x in M. Then there is a unique homomorphism φ of algebras over R,
with units, such that for all x in M we have

λ = φ ◦ π. (18)

1.2.2 Main involution α and main anti-involution τ

It is by using this universal property that one defines the main involution
α and the main anti-involution τ of Cl(q). To define α let λ be the map
λ : M → Cl(q) defined by λ(x) = π(−x). Evidently

(λ(x))2 = (π(−x))2 = (−π(x))2 = q(x).

Therefore λ defines (“extends to”) a unique algebra homomorphism α :
Cl(q)→ Cl(q) such that α(π(x)) = π(−x) = −π(x). It follows that

α(α(π(x))) = π(x)

thus α2 ◦ π = Id on M . From the uniqueness of the extension it follows
then that α2 = Id, so that α is an involutive automorphism of Cl(q). It is
called the main involution, or the main automorphism. Using the universal
property in a similar but a somewhat different way one introduces the main
anti-involution τ. Let Cl(q)op denote the algebra opposite to Cl(q). That
is Cl(q)op is the same as Cl(q) as a linear space, but the multiplication is
defined in the opposite order. The product xy in Cl(q)op is the same as
yx in Cl(q). But squares x2 are evidently the same in both algebras. The
identity map ι : x 7→ x from Cl(q) to Cl(q)op is an anti-homomorphism,
ι(xy) = yx. Consider the map λ : M → Cl(q)op defined as λ(x) = ι(π(x)).
Since the squares are the same in both algebras, we have that (λ(x))2 = q(x)1.
Therefore λ extends to an algebra homomorphism from Cl(q) to Cl(q)op.

12



Composing this map with the inverse of ι we get τ : Cl(q)→ Cl(q). Arguing
as in the previous case we deduce that τ 2 = Id, therefore τ is an anti-
automorphism of Cl(q). From the very definition we have that τ(π(x)) = π(x)
for all x ∈M. Since π(M) generates Cl(q), this last property determines the
anti-automorphism τ of Cl(q) uniquely.

Remark 1.17. For a in Cl(q) we often write aτ instead of τ(a).

While the tensor algebra T (M) is Z-graded, where Z stands for the
Abelian group (under addition) of integers, the quotient algebra Cl(q) =
T (M)/J(q) is only Z2-graded. That is because the expressions x⊗x− q(x)1
generating the ideal J(q) are not grade homogeneous (unless q = 0, in which
case Cl(q) is the exterior algebra of M).

1.2.2.1 The even subalgebra
There is another way of getting to the main automorphism α. Every element
of the tensor algebra is a sum of even and odd tensors (that is tensors of even
and odd degrees)

T (M) = T (M)even ⊕ T (M)odd. (19)

In the tensor algebra T (M) the mapping x 7→ −x generates algebra auto-
morphism, let us call it α̃, that changes the sign of elements of T (M)odd.
Since the expressions x⊗x− q(x) generating the ideal J(q) are invariant un-
der the transformations x 7→ −x, the automorphism α̃ of the tensor algebra
descends to the quotient algebra Cl(q). It maps πq(x) into −πq(x), therefore
it coincides with the main automorphism α. It follows that α simply changes
the sign of products of odd numbers of πq(x)x ∈M .

Note 1.18. There is no standard notation for the main automorphism and
anti-automorphism. Different authors use different letters to denote them.

We now define Cl(q)+ = πq(T (M)even),Cl(q)− = πq(T (M)odd), and we
obtain the direct sum decomposition

Cl(q) = Cl(q)+ ⊕ Cl(q)−, (20)

where Cl(q)+ (resp. Cl(q)−) is generated by sums of even (resp. odd) number
of elements of πq(M).

Notice that the product of any two even elements is even, the product of
any two elements one of which is odd and one even, is odd, and the product
of any two odd elements is even. I short:

Cl(q)+Cl(q)+ ⊂ Cl(q)+, Cl(q)+Cl(q)− ⊂ Cl(q)−,

Cl(q)−Cl(q)− ⊂ Cl(q)+.
(21)
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Therefore (since also 1 is an even element) Cl(q)+ is a subalgebra of Cl(q).
It is called the even Clifford algebra.

1.2.3 Anti-derivations

We denote by M∗ the dual module, that is the module of all linear functions
from M to R.

Lemma 1.19 ([7, Lemma 3.2, p. 43],[5, Lemma 1, p. 141]). Let f be an
element of M∗. There exists a unique linear mapping if from T (M) to T (M)
such that

1. We have
if (1) = 0, (22)

2. For all x ∈M ⊂ T (M), u ∈ T (M). we have

if (x⊗ u) = f(x)u− x⊗ if (u). (23)

The map f 7→ if from M∗ to linear transformations on T (M) is linear. We
have

(i) if (T
pM) ⊂ T p−1M,

(ii) i2f = 0,

(iii) if ig + igif = 0, for all f, g ∈M∗.

If q is a quadratic form on M then the ideal J(q) is stable under if , that
is if (J(q)) ⊂ J(q), and thus if defines the mapping, denoted by īf , on the
quotient Clifford algebra Cl(q) = T (M)/J(q):

πq ◦ if = īf ◦ πq. (24)

On Cl(q) we then have

(iv) īf (1) = 0, (1 ∈ Cl(q))

(v) For all x ∈M , w ∈ Cl(q), we have

īf (πq(x)w) = f(x)w − πq(x)̄if (w). (25)

Corollary 1.20. [7, Corollary, p. 44] If M is a vector space, then the
mapping πq : M → Cl(q) is injective and we can identify M with πq(M).

The proof goes as follows. Let x be a nonzero vector in M and let f be
an element from M∗ for which f(x) = 1 (cf. Section 1.1.1). Let if be as
in Lemma 1.19. Setting w = 1 in Eq. 25 we get if (πq(x)) = f(x)1 6= 0,
therefore πq(x) 6= 0.
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1.2.4 Bourbaki’s application λF

Definition 1.21. Let F be a bilinear form on M. Then every x ∈M deter-
mines a linear form fx on M defined as fx(y) = F (x, y). We will denote by
īFx the antiderivation īfx described in Lemma 1.19. In particular we have:

(i) īFx (1) = 0, (1 ∈ Cl(q))

(ii) For all y ∈M , w ∈ Cl(q), we have

īFx (yw) = F (x, y)w − y īFx (w). (26)

Proposition 1.22. With the notation as in the Definition 1.21, for y1, ..., yn
in Cl(q) we have

īFx (y1...yn) =
n∑
j=1

(−1)n−1F (x, yj)y1...ŷj...yn, (27)

where ŷj means that this entry is omitted in the product.
In particular if F (x, yj) = 0 for all j = 1, .., n, then īFx (y1...yn) = 0.

Proof. The proof follows immediately from the definition by induction.

The following Lemma is taken from Bourbaki [5, p. 142-143]. As we will
see it has far reaching consequences.

Lemma 1.23. There exists a unique linear mapping λF : T (M) → T (M)
such that

λF (1) = 1, (28)

λF (x⊗ u) = iFx (λF (u)) + x⊗ λF (u), x ∈M. (29)

For all f ∈M∗ we have
λF ◦ if = if ◦ λF . (30)

If F and G are two bilinear forms on M, then

λF ◦ λG = λF+G. (31)

For every bilinear form F the linear mapping λF : T (M) → T (M) is a
bijection.

The consequence of this Lemma for Clifford algebras is described in the
following Proposition.
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Proposition 1.24 ([5, Proposition 3, p. 13]). Let q and q′ be two quadratic
forms on M such that q′(x) = q(x)+F (x, x), where F (x, y) is a bilinear form.
The mapping λF maps the ideal J(q) onto the ideal J(q) and it defines an
isomorphism, denoted λ̄F of the R-module Cl(q′) onto the R-module Cl(q) :

πq ◦ λF = λ̄F ◦ πq′ . (32)

Note 1.25. In the following we will always assume that M is a vector
space. Therefore, in particular, M can be identified with πq(M) ⊂ Cl(q).

Proposition 1.26. For all x ∈M, w ∈ Cl(q) we have

λ̄F (1) = 1,

λ̄F (x) = x,

λ̄F (xw) = īFx (λ̄F (w)) + xλ̄F (w). (33)

If F,G are bilinear forms, if q′′(x) = q′(x) + G(x, x) and q′(x) = q(x) +
F (x, x), then

λ̄F+G = λ̄F ◦ λ̄cG. (34)

Since λ̄0 is the identity map, we thus have

(λ̄F )
−1

= λ(−F ). (35)

Proof. The only property in the two propositions above that is not taken
directly from Ref. [5] is the formula (33). But it follows immediately by
applying πq to both sides of Eq. (29) and making use of Eqs. (25) and (32).
Eq. (34) follows directly from Eq. (31) and the definition of the quotient
mappings, as we have the general property that composition of two quotient
mappings is the quotient of their composition.

Note 1.27. Notice that in Eq. (33) the multiplication xw on the left is in the
algebra C(q′), while the multiplication xλ̄F (w) on the right is in the algebra
Cl(q).

Lemma 1.28. Let M be a vector space. If x1, ..., xn are in M and if
F (xi, xj) = 0 for i < j, then

λ̄F (x1...xn) = x1...xn. (36)

16



Proof. The proof is by induction. For n = 1 the statement evidently holds.
Let us assume it holds for n and suppose we add x such that F (x, xi) = 0
for i = 1, ..., n. Then, using Eq. (33) we have

λ̄F (xx1...xn) = īFx (x1...xn) + xx1...xn.

But then, using Proposition 1.22, we get īFx (x1...xn) = 0.

The following immediate corollary can be found in Bourbaki [3, Exercise
3c, p. 154]

Corollary 1.29. Let M be a vector space over a field of characteristic 6= 2, q
a quadratic form, and Φ the associated bilinear form. Let F (x, y) = 1

2
Φ(x, y),

so that q(x) = F (x, x), and denote µq = λ̄F , so that µq : Cl(q) → Λ(M). If
x1, ...., xn are in M and if they are pairwise orthogonal, i.e. F (xi, xj) = 0 for
i 6= j then

µq(x1...xn) = x1 ∧ .... ∧ xn. (37)

1.2.4.1 The mapping λF as an exponential Here we assume that the
ring R is the field of real numbers R or complex numbers C. Replacing F by
tF and G by sF , t, s ∈ R from the property (31) we obtain

λtF ◦ λsF = λ(t+s)F . (38)

Since λ0 = Id, it follows that there exists a linear operator aF on T (M) such
λtB = exp(taF ). We can find the properties defining aF by replacing F by
tF in Eqs. (28) and (29) defining λF , and differentiating with respect to t at
t = 0. We notice that λtF (x) = x and that, since λF is linear in F , we have
itFx = tiFx . Taking all this into account we obtain:

aF (1) = 0, (39)

aF (x) = 0, x ∈M, (40)

aF (x⊗ u) = iFx (u) + x⊗ aF (u). (41)

In particular we get

aF (x⊗ y) = F (x, y) (42)

aF (x⊗ y ⊗ z) = F (x, y)z − F (x, z)y + F (y, z)x, (43)

aF (x⊗ y ⊗ z ⊗ u) = F (x, y)z ⊗ u− F (x, z)y ⊗ u+ F (y, z)x⊗ u+

F (z, u)x⊗ y − F (y, u)x⊗ z + F (x, u)y ⊗ z.
(44)
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Note 1.30. There is an important particular case when the bilinear form F
is antisymmetric: F (x, y) = −F (y, x). In this case q′(x) = q(x) + F (x, x) =
q(x). Therefore λ̄F maps every Cl(q) into itself. In particular it maps into
itself the exterior algebra Λ(M) of M. Thus we can rewrite the equations
(42)-(44) replacing ⊗ by ∧.

In quantum physics exterior algebra is used to describe the Fock space of a
Fermi field. The operator aF removes two particles from a multiparticle state
- it acts like a annihilation of a pair operator. Pairs of Fermions seem to be of
some importance in theories of superconductivity. Thus it may be speculated
that operators similar to λF and aF may be relevant for mathematical models
of physical phenomena similar to superconductivity.

1.3 Graded structure of a Clifford algebra

Here we assume that M is a finite dimensional vector space over a
field with characteristic 6= 2.

Remark 1.31. If e1, ..., en is a basis in M , then the tensor algebra T (M) has
the basis 1, ei, ei1⊗ei2 , ..., ei1⊗...⊗eip , ... Thus a general element of the tensor
algebra can be represented as a finite sequence of tables t, ti, ti1i2 , ..., ti1...ip

where t, ti, ti1...ip (with i, i1, ..., ip = 1, ..., n) are scalars. In the Clifford algebra
we skip the symbol of tensor multiplication and we restrict ourselves to i1 <
... < ip, with p ≤ n. The tensor algebra is always infinite dimensional, the
Clifford algebra is always of the dimension 2n.

We will be using the notation as in Corollary 1.29. In particular Λ(M) is
the exterior algebra over M, q is a quadratic form, F is the unique symmetric
bilinear form such q(x) = F (x, x), and µq = λ̄F is the vector space isomor-
phism µq : Cl(q) → Λ(M) with the properties that µq(1) = 1, µq(x) = x for
x ∈M, and

µq(xw) = iFx (µq(w)) + x ∧ µq(w). (45)

In particular if x1, ..., xn are pairwise orthogonal, i.e F (xi, xj) = 0 for i 6= j,
then

µq(x1...xn) = x1 ∧ ... ∧ xn. (46)

From Proposition 1.13 we know that M admits an orthogonal basis {ei},i =
1, ..., n. We choose this basis, then µq maps each product ei1 ...eip in Cl(q) to
the product ei1 ∧ ...∧ eip in the exterior algebra Λ(M). The exterior algebra
Λ(M) is Z-graded:

Λ(M) =
n⊕
p=0

Λp(M), (47)
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where Λp(M) is ( np ) = n!
p!(n−p)! dimensional, and the elements ei1 ∧ ... ∧ eip

(p-vectors) with i1 < ... < ip form a basis in Λp(M). For p > n we have
Λp(M) = {0}, for p = 1 we have Λ1(M) = M, and for p = n we have that
Λn(M) is 1-dimensional, spanned by e1 ∧ ... ∧ en. For p = 0 we have that
Λ0(M) is the basic field. The whole exterior algebra Λ(M) is

∑n
p=0( np ) = 2n

dimensional.
We can use the linear isomorphism µq to transfer the graded structure of

the exterior algebra back to Cl(q) by defining

Cp(q) = µ−1
q (Λp(M)). (48)

The subspaces Cp(q) are ( np )-dimensional. Moreover,if e1, ..., en is any or-
thogonal basis for M , then the products ei1 ...eip , (i1 < i2 < ... < ip), form a
basis Cp(q).

Remark 1.32. One has to be careful here. While it is true that any set
of linearly independent vectors can be extended to a basis, it is not true, in
general, that any set of mutually orthogonal vectors can be extended to an
orthogonal basis. As a simple counterexample we can take two-dimensional
space R2 with quadratic form q(x1, x2) = x2

1 − x2
2, and the bilinear form

F (x, y) = x1y1− x2y2. The vector e1 with components (1, 1) has the property
q(e1) = 0, but any vector orthogonal to this vector is automatically propor-
tional to e1. Thus e1 can not be extended to an orthogonal basis.

1.3.1 The center Z(q) of Cl(q)

For any algebra A its center Z(A) is defined as the set of all these elements
of the algebra that commute with every element of A

Z(A) = {u ∈ A : ua = au for all a ∈ A}. (49)

It follows from the definition that the center of any algebra A is a subalgebra
of A, and that it always contains the scalar multiples of the identity of A.
With the assumptions and notation as in Sec. 1.3 we will now find the
center of the Clifford algebra Cl(q). First we will do it for a general, possibly
degenerate q, then we will specialize to the case of nondegenerate q. Instead of
stating the result first, and then providing a proof, we will take the opposite
way: first we will discuss the subject and derive the result, and only then
make it precise in the form of a proposition. We will use the fact that the
algebra Cl(q) is graded into even and odd parts, cf. Eq. (20).

Suppose u is an element of the center and let us split it into the even and
odd parts

u = u0 + u1, u0 ∈ Cl(q)+, u1 ∈ Cl(q)−. (50)

19



Since u commutes with all elements of the algebra, it commutes, in particular,
with all even elements a0 ∈ Cl(q)+

(u0 + u1)a0 = a0(u0 + u1)

or
u0a0 − a0u0 = a0u1 − u1a0.

On the left we have even element, on the right - odd. Therefore both must
be zero. Thus u0a0 = a0u0 and a0u1 = u1a0. We can do the same for odd
elements a1. The result is that if u = u0 + u1 is in the center, then the
even part u0 and the odd part u1 are in the center. Therefore we can look
separately for even and for odd elements of the center.

Let us first look for even elements u0 in the center. We choose an orthog-
onal basis ei in M , and the corresponding basis ei1 ...eip , (i1 < i2 < ... < ip),
in Cp(q). For u to commute with all the elements of the algebra is the same
as to commute with all elements of the basis ei1 ...eip . We can also write u0

as a linear combination of even elements, ei1 ...eip , p even, of the basis of the
algebra. Let us select the first vector e1 of the basis ei. We can then split
u0 into the part v0 that is the linear combination of those ei1 ...eip that does
not contain e1, and the second part, made of those ei1 ...eip that contain e1.
Which we write as follows:

u0 = v0 + e1v1, (51)

where v0 is even and does not contain e1, and v1 is odd and does not contain
e1. But now u0 must commute with e1, which means

e1(v0 + e1v1) = (v0 + e1v1)e1. (52)

Since v1 is odd, and since it does not contain e1, it follows that v1 anticom-
mutes with e1, i.e. v1e1 = −e1v1. Since v0 is even and it does not contain
e1, it commutes with e1. Therefore, from Eq. (52) we get that e2

1v1 = 0. If
e2

1 6= 0, which certainly happens if q is nondegenerate, we deduce that v1 = 0.
Therefore u0 is even and does not contain e1. The same we can repeat with
e2. We can move to the front in the expression e2v1 changing the sign of v1.
The result is that u0 does not contain in its expansion any element ei with
e2
i 6= 0.

We now investigate odd elements in the center. As before we write

u1 = v1 + e1v0,

where v1 is odd, v0 is even, and neither v1 nor v0 does not contain e1. This
time e1 commutes with v0, therefore all we get from u1e1 = e1u1 is that v1
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commutes with e1, which implies that v1 = 0. Repeating this reasoning for
e2, e3, etc. we conclude that u1 is the proportional to the product e1....en of
all basis elements. Since u1 is odd, this can happen only if n is odd.

We summarise the above in the proposition below:

Proposition 1.33. The even part of the center of Cl(q) consists of linear
combinations of the even products of basis elements of M whose square is
zero, and of the identity. The odd part of the center consists of the scalar
multiples of the element e1....en if the dimension of M is odd, and consists
of zero alone if the dimension of M is even.

1.3.2 The algebras Clp,q,r in the real case (c.f. [18])

Let us now concentrate on the real case, when M is a real vector space of
dimension n equipped with a (real-valued) quadratic form q. In that case if
ei is an orthogonal basis, q(ei) are real numbers. If q(ei) is positive, we will
redefine ei replacing it with ei 7→ ei/

√
q(ei). For the new ei we get q(ei) = +1.

If q(ei) is negative, we replace ei 7→ ei/
√
−q(ei), and for the new ei we get

q(ei) = −1. In this way we diagonalize the quadratic form q, so that on our
basis vectors it has only values +1, −1, or 0. We now reorganize our basis
so, that we have first basis vectors with square +1, say there are p of them,
e1, ..., ep, then we have q basis vectors with square −1, ep+1, ..., ep+q, finally
we have r basis vectors with square zero, ep+q+1, ..., ep+q+r, with p+q+r = n.
We call such a basis orthonormal. The corresponding Clifford algebra is then
denoted as Clp,q,r. If r = 0, we simply write Clp,q, and when r = 0 and q = 0,
we write Clp.

We will use the notation Cl0p,q,r for the even subalgebra of Clp,q,r.
We will now demonstrate several simple isomorphisms between Clifford

algebras for different p and q.

Lemma 1.34. For p ≥ 1 we have the isomorphisms of algebras Clp,q,r '
Clq+1,p−1,r.

Proof. Indeed, let e1, ..., ep, ep+1, ..., ep+q, ep+q+1, ..., ep+q+r be an orthonormal
basis for Clp,q,r. we define a new basis ẽi as follows:

ẽi =

{
e1, i = 1;
eie1, i = 2, ..., p+ q + r.

(53)

We find that all ẽi anticommute with each other, that ẽ2
1 = 1, ẽ2

2 = ... = ẽ2
p =

−1, ẽ2
p+1 = ... = ẽ2

p+q = 1, and ẽ2
p+q+1 = ... = ẽ2

p+q+r = 0. Therefore the basis
ẽi generates the Clifford algebra Clq+1,p−1,r. Yet this is the same algebra as
the original one.
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Remark 1.35. The above isomorphism is the isomorphism of two algebras.
That means there is a bijective linear map φ : Clp,q,r → Clq+1,p−1,r such that
φ(ab) = φ(a)φ(b) for all a, b ∈ Clp,q,r. The two algebras are isomorphic as ab-
stract algebras, identity is mapped into identity, but, for instance, their graded
structures are not isomorphic. The mapping φ does not map odd elements
into odd elements, also the main automorphism and anti-automorphism are
different for the two algebras.

Lemma 1.36. For p ≥ 4 we have the isomorphism of algebras Clp,q,r '
Clp−4,q+4,r.

Proof. With the notation as in the proof of Lemma 1.34 we set

ẽi =

{
eie1e2e3e4, i = 1, 2, 3, 4;
ei, i = 5, ..., n.

(54)

Notice that ei anticommutes with e1e2e3e4 for i = 1, ..., 4. Therefore, for
i ≤ 4, we have

ẽ2
i = −(e1e2e3e4)2 = −1.

Therefore the first four vectors of the basis change it squares from +1 to
−1.

Remark 1.37. In this case both algebras have the same even and odd parts.
Therefore main automorphisms are the same. But main anti-automorphisms
are not the same. Calculating the main anti-automorphism of the first algebra
on ẽ1 we find

ẽτ1 = (e2e3e4)τ = e4e3e2 = e2e4e3 = −e2e3e4 = −ẽ1

while the main anti-automorphism of the second algebra should leave ẽ1 un-
changed.

Notice that in both lemmas the new generators ẽi are linearly independent
as they are proportional to the elements of the standard basis (without count-
ing the identity 1) ei1 ...eik , i1 < .... < ik, k = 1, ..., n of the Clifford algebra
.

Lemma 1.38. For q ≥ 1 we have the isomorphism

Cl0p,q,r ' Clp,q−1,r, (55)

where Cl0p,q,r denotes the even subalgebra of Clp,q,r.
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Proof. Let ei be an orthonormal basis with e2
i = 1, for i = 1, ..., p, e2

i = −1
for i = p + 1, ..., p + q, and e2

i = 0 for i = p + q + 1, ..., n. We define ẽi, for
i = 1, ..., n as

ẽi = eiep+q. (56)

We may skip i = p + q, since then ẽi = −1. We obtain this way n − 1
mutually anticommuting elements, with p squares +1, q − 1 squares −1 and
r squares zero. Therefore they generate the algebra Clp,q−1,r. On the other
hand they are all even elements of Clp,q,r, and every even element of Clp,q,r
can be obtained using ẽi. Thus the lemma holds.

1.3.2.1 Examples in low dimensions
It is important to know an explicit form of Clifford algebras in low dimensions,
since then we can show the periodicity properties for finding their forms in
higher dimensions.

It will be convenient to introduce the following four real matrices 1, ι, θ, κ:

1 =

(
1 0
0 1

)
, ι =

(
0 −1
1 0

)
,

θ =

(
1 0
0 −1

)
, κ =

(
0 1
1 0

)
(57)

The three matrices ι, θ, κ mutually anticommute and together with the iden-
tity matrix 1 they form a basis in the 4-dimensional space Mat(2,R) of
real 2 × 2 matrices. In fact these four matrices form an orthonormal ba-
sis with respect to the Euclidean scalar product in Mat(2,R) defined by
(u, v) = 1

2
Tr(uT v). We also notice that we have the following algebraic rela-

tions:
ιθ = κ, κθ = ι, κι = θ. (58)

1.3.2.1.1 Cl0 ' R. Here n = 0, so the Clifford algebra is 20 = 1-
dimensional. The vector space is in this case zero-dimensional, it consists of
the vector 0 alone. The Clifford algebra consists just of the scalar multiples
of the identity.

1.3.2.1.2 Cl1 ' R ⊕ R. Here n = 1 and the Clifford algebra is 2-
dimensional. Apart of the identity there is just one basis vector with square
1. It is convenient to represent such a direct sum as block diagonal matrices,
in this case with real numbers on the diagonal. Using the notation of Eq.
(57) we can choose:

e1 7→ θ. (59)
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Remark 1.39. We could also choose e1 7→ κ. To see that choosing e1 = θ is
better, we notice that defining

e+ =
1

2
(1 + e1), e− =

1

2
(1− e1) (60)

we have e+ + e−=1, e+e− = e−e+ = 0, (e+)2 = e+, (e−)2 = e−. In other
words e+ and e− are two orthogonal projections, and the sets {αe+ : α ∈ R}
and {βe− : β ∈ R} are two algebras, each one isomorphic to R. When e1 = θ
these two projections are represented by matrices

e+ =

(
1 0
0 0

)
, e− =

(
0 0
0 1

)
, (61)

and their properties are evident from the matrix form. If we choose e1 = κ,
then

e+ =
1

2

(
1 1
1 1

)
, e− =

1

2

(
1 −1
−1 1

)
, (62)

which are rather clumsy. Moreover, for e1 = θ it is evident that the whole
algebra is represented by diagonal matrices αe+ + βe−

αe+ + βe− =

(
α 0
0 β

)
, (63)

while for e1 = κ the whole algebra is represented by matrices of the form

1

2

(
α + β α− β
α− β α + β

)
(64)

in which separating the two algebras is more involved.

1.3.2.1.3 Cl0,1 ' C. The algebra is spanned by the identity and one
basis vector with square minus one e2

1 = −1. Using the notation of Eq. (57)
we can represent the generator by the matrix:

e1 7→ ι. (65)

Identifying e1 with i, the imaginary square root of −1, the algebra becomes
isomorphic to complex numbers C.

1.3.2.1.4 Cl0,0,1 - the Dual numbers Here we have one basis vector
with square 0. We can represent the generators by the matrices:

1 7→
(

1 0
0 1

)
, e1 7→

(
0 1
0 0

)
. (66)

The algebra is known under the name of dual numbers.
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1.3.2.1.5 Cl0,2 ' H. The quadratic form3 q(x) is in this case q(x1, x2) =
−(x1)2 − (x2)2. We have two anticommuting generators e1, e2 with squares
−1

e2
1 = e2

2 = −1, e1e2 = −e2e1. (67)

The elements 1, e1, e2, e12 = e1e2 form the basis of the algebra. We find
that e12 has also square −1 and it anticommutes with e1 and e2. Using the
substitution

e1 → i, e2 → j, e12 → k

where i, j, and k are imaginary units of quaternions, we obtain the isomor-
phism Cl0,2 ' H - the algebra of quaternions. While the algebra of quater-
nions is isomorphic to the Clifford algebra Cl0,2 the isomorphism is not a
natural one. The natural function of quaternions is to implement rotations
in R3. In order to understand better the role of quaternions as representing
elements of Cl0,2 let us find how are the Clifford algebra operations such as
trace, main involution and main anti-involution represented in H.

Every quaternion q is written as q = α0+α1i+α2j+α3k, where α0, α1, α2, α3

are real numbers. This corresponds to the element q of the Clifford algebra
Cl0,2

q = α0 + α1e1 + α2e2 + α12e12. (68)

Therefore the trace of q, as it is defined in Sec. 1.4.2, is simply the scalar
part α0 of the quaternion. The main involution α is an automorphism of
the algebra that changes the signs of odd vectors. In our case it should
change the sign of i and j, but not of k. It is easy to guess its form acting on
quaternions4:

α(q) = kqk−1. (69)

Anti-automorphism τ should change the order of multiplication, but should
not change the signs of e1 and e2. Quaternions have a well known anti-
automorphism, the conjugation q 7→ q∗ which changes the sign of the imagi-
nary units i, j, k. To make it not to change the signs of e1, e2 we must combine
it with the previous automorphism. Thus:

τ(q) = k q∗ k−1. (70)

We can represent the algebra in two-dimensional complex vector space as
follows:

3The symbol q for the quadratic form should not be confused with the symbol q used
for a generic quaternion.

4Where of course k−1 = −k.
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e1 7→
(
i 0
0 −i

)
, e2 7→

(
0 1
−1 0

)
. (71)

Then

e1e2 =

(
0 i
i 0

)
, (72)

and the whole algebra consists of matrices of the form:

u =

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
= {
(
z1 z2

−z̄2 z̄1

)
: zj ∈ C}. (73)

1.3.2.1.6 Cl3 ∼= Mat(2,C). The algebra is 23 = 8-dimensional. We
have three anticommuting generators with squares 1. They can be represented
by the Pauli matrices:

1 7→ σ0 =

(
1 0
0 1

)
, e1 7→ σ1 =

(
0 1
1 0

)
,

e2 7→ σ2 =

(
0 −i
i 0

)
, e3 7→ σ3 =

(
1 0
0 −1

)
. (74)

We have:

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2, σ1σ2σ3 = i.

Notice that while σ1σ2 is proportional to σ3 with the complex proportionality
constant, it is independent of σ3 as an element of the real vector space. The
eight complex matrices σ0, σi, σij (i < j), and σ1σ2σ3 = i form a real basis in
the space of 2× 2 of complex matrices. Every complex matrix 2× 2 can be
written as a linear combination of these eight matrices with real coefficients.
The space of 2×2 complex matrices has 4 complex dimensions, that is 8 real
dimensions.

As we did it with quaternions, so here we will identify the trace, the main
automorphism, and the main anti-automorphism of the Clifford algebra Cl3
realized as the algebra of all complex 2× 2 matrices.

The trace is easy, it should be the real coefficient in front of the identity
matrix. So it must be 1/2 of the real part of the ordinary trace of the matrix.

We now consider the main automorphism. It should change the sign of
the three Pauli matrices. Matrices σ1 and σ3 are real, while σ2 is imaginary.
The formula that works can be obtained after some little work. For a complex
2× 2 matrix a we find that5

α(u) = σ2ūσ
−1
2 ,

5Where, of course, σ−12 = σ2.
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where ā denotes the complex conjugated matrix. Explicitely:

α :

(
a b
c d

)
7→
(
d̄ −c̄
−b̄ ā

)
. (75)

The main anti-automorphism should reverse the order of multiplication,
but must leave the Pauli matrices unchanged. All three Pauli matrices are
Hermitian, therefore the Hermitian conjugate of the complex matrices (com-
plex conjugate transpose, a 7→ a∗ = āt) does the job:

τ(a) = a∗. (76)

The composition of τ and α is sometimes called the conjugation, and it
is denoted nu(u). Explicitely, if

u =

(
a b
c d

)
, (77)

then

uν =

(
d −b
−c a

)
. (78)

We also have the following useful property:

uuν = uνu = det(u)1. (79)

1.3.2.1.7 Cl1,1 ' Mat(2,R). The quadratic form is now q(x1, x2) =
(x1)2−(x2)2. The Clifford algebra is 22 = 4-dimensional. We can represented
it as the algebra of all real 2×2 matrices (which is also 2×2 = 4-dimensional)
by defining generators e1, e2 with squares 1 and −1 as follows:

1 7→
(

1 0
0 1

)
, e1 7→

(
0 1
1 0

)
, e2 7→

(
0 −1
1 0

)
. (80)

The element e1e2 is now represented by the matrix

e1e2 7→
(

1 0
0 −1

)
. (81)

These four matrices span the whole algebra of 2×2 real matrices. The trace
in the Clifford algebra is now 1/2 of the trace of the matrix. The main
automorphism is realized as a 7→ e12ae

−1
12 , the main anti-automorphism as

a 7→ e1a
te−1

1 .
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1.3.2.1.8 Cl1,2 ' Mat(2,C) We need three anticommuting matrices,
one with square 1, and two with square −1. We can use to this end Pauli
matrices, multiplied by imaginary i to get square −1. There is a freedom of
choice here, let us choose the following representation:

e1 7→ σ3 =

(
1 0
0 −1

)
, e2 7→ iσ1 =

(
0 i
i 0

)
,

e3 7→ −iσ2 =

(
0 −1
1 0

)
. (82)

With this choice we have

e1e2e3 7→ i1, (83)

therefore we have at our disposal all complex numbers, and Pauli matrices -
they generate the whole algebra Mat(2,C) of 2 × 2 complex matrices. The
Clifford algebra Cl2,1 has 23 = 4× 2 real dimensions.

In order to find the main automorphism we notice that we have at our
disposal the complex conjugation operation. It reverses the sign of e2, but
leaves e1 and e3 invariant. Therefore we add conjugation by σ1 to obtain

α(u) = σ1ūσ
−1
1 . (84)

In order to find the main anti-automorphism we notice that we have at our
disposal the Hermitian conjugation operation u 7→ u∗ = ūt. It reverses the
signs of e2 and e3. Therefore we combine it with the conjugation by σ3 to
obtain

τ(u) = σ3u
∗σ−1

3 . (85)

It is easy to find the explicit form of the conjugation ν(u) = α(τ(u))

u 7→ ν(u) = α(τ(u)) = τ(α(u)) = CutC−1, (86)

where

C = e3 =

(
0 −1
1 0

)
(87)

Explicitely, if

u =

(
a b
c d

)
, (88)

then

uν =

(
d −b
−c a

)
, (89)

which has the same form as in Eq. (78).
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1.3.2.1.9 Cl3,1 ' Mat(4,R) - Majorana representation
The quadratic form for the Minkowski space of Special Relativity can be

either of signature (1, 3) or (3, 1). Here we consider the signature (3, 1). We
choose orthonormal basis ei,(i = 1, ..., 4) with q(e1) = q(e2) = q(e3) = 1, and
q(e4) = −1. Using the notation of Eq. (57) the Clifford algebra Cl3,1 can
then be generated by 4× 4 real matrices in a block matrix form as follows:

e1 =

(
θ 0
0 θ

)
, e2 =

(
0 ι
−ι 0

)
,

e3 =

(
κ 0
0 κ

)
, e4 =

(
0 ι
ι 0

)
. (90)

The matrices satisfy the anticommutation relations6

eiej + ejei = 2ηij, (91)

where

η =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (92)

The matrices ei generate the whole 24 = 16-dimensional Clifford algebra.
Apart of the identity and the four matrices ei, we have six matrices eiej,
(i < j), four matrices eiejek, (i < j < k), and one matrix ω = e1e2e3e4. This
last matrix anticommutes with the matrices ei, and has square −1:

ω = e1e2e3e4 =

(
−ι 0
0 ι

)
. (93)

The sixteen real matrices so obtained span the whole algebra Mat(4,R) of real
4×4 matrices. Of course the representation given in Eq. (90) is not a unique
one. Given any invertible 4 × 4 real matrix S, the matrices ẽi = SeiS

−1

provide another possible representation. In fact, if we have any four real
matrices ẽi satisfying the same anticommutation relations as ei (cf. Eq.
91)), then there exists real invertible matrix S, unique up to a non-zero real
multiplier, such that ẽi = SeiS

−1. Representation of the Clifford algebra Cl3,1
by real 4 × 4 matrices is often called the Majorana representation. Because
the matrix ω anticommutes with all ei, (i = 1, ..., 4) we can choose it to
implement the main automorphism α:

α(u) = ωuω−1, u ∈ Cl3,1 ' Mat(4,R). (94)

6To be precise, on the right hand side of Eq. (91) we should put ηij14, where 14 is the
4× 4 identity matrix.
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To implement the main anti-automorphism we notice the matrices repre-
senting e1, e2, e3 are symmetric, while e4 is antisymmetric. The transposition,
which is an anti-automorphism of the matrix algebra Mat(4,R) would leave
e1, e2, e3 invariant, but it will change the sign of e4. Therefore we introduce
the matrix T = e1e2e3:

T = e1e2e3 =

(
0 −1
1 0

)
, (95)

which commutes with e1, e2, e3 and anticommutes with e4. We can now im-
plement the main anti-involution τ as

τ(u) = T ut T−1, (96)

where u 7→ ut stands for the transposition of matrices.

1.3.2.1.10 Cl1,3 ' Mat(2,H) - Chiral (Weyl) and Dirac representa-
tions

HereM is the Minkowski space, and we will use coordinates x = (x0, x1, x2, x3)
with the quadratic form q(x) = x2

0 − x2
1 − x2

2 − x2
3. Since we will use several

different matrix representation of the Clifford algebra Cl1,3, we will use differ-
ent symbols for matrices representing the orthonormal basis ei, (i = 0, .., 3).
The simplest representation is by 2× 2 matrices with quaternion entries:

g0 =

(
0 1
1 0

)
, g1 =

(
i 0
0 −i

)
, g2 =

(
j 0
0 −j

)
, g3 =

(
k 0
0 −k

)
. (97)

It is evident that the matrices satisfy the necessary anticommution relations.
They also generate the whole 24 = 4×4-dimensional algebra Mat(2,H). Here
24 is the dimension of the Clifford algebra Cl1,3, and 4×4 is the dimension of
the algebra Mat(2,H). We can now implement the representation of quater-
nions by complex gamma matrices as in Eqs (71),(72) to obtain the following
representation in terms of 4× 4 complex matrices:

g0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , g1 =


i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i

 ,

g2 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 ,


0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

 . (98)
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The matrix representation above shows relation to the Mat(2,H) algebra,
but physicists routinely use different representations. One of them is called
chiral or Weyl representation. It is defined by the following matrices Γi:

Γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , Γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

Γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , Γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (99)

The two representations gi and Γi are equivalent, that is there exists invertible
4× 4 complex matrix S such that

SgiS
−1 = Γi, (i = 0, ..., 3). (100)

Explicitely:7

S =
1

2


1 −1 −i i
−1 −1 i i
−i i 1 −1
i i −1 −1

 . (101)

The matrices Γi are all block antidiagonal. The Dirac representation uses
matrices γi with γi = Γi for i = 1, 2, 3, but

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (102)

Again the Dirac representation is equivalent to the Weyl representation:

γi = S1ΓiS
−1
1 , (i = 0, ..., 3), (103)

with8

S1 =
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

 . (104)

7In practice it is simpler to verify the equations Sgi = ΓiS. This avoids calculating
S−1 even though the determinant of the matrix S given above is equal to 1.

8the square root of 2 is there just to make the determinant of S1 equal to 1.
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1.3.2.1.11 Clp+1,q+1 ' Mat(2,Clp,q). In general the notation Mat(2, A)
denotes the algebra of 2× 2 matrices the entries of which are elements of the
algebra A. Let ei be the basis of the n = p+ q dimensional space generating
the 2n-dimensional Clifford algebra Clp,q. Let 1 be the identity element of
this algebra. We define n+ 2 generators of the algebra Clp+1,q+1 as follows

ei 7→
(
ei 0
0 −ei

)
, e+ 7→

(
0 1
1 0

)
, e− 7→

(
0 −1
1 0

)
. (105)

The matrices on the right are 2 × 2 block matrices, with blocks of the size
2n × 2n. They form 4× 2n = 2n+2 algebra.

Of course the isomorphism Cl1,1 ' Mat(2,R) is a particular case of the
above general isomorphism, for n = 0.

1.3.2.2 The table of real Clifford algebras Clp,q The following clas-
sification of all real Clifford algebras Clp,q can be obtained by following the
reasoning like those above (c.f. [18] and references therein):

Theorem 1.40 (Cartan 1908). We have the following isomorphism of alge-
bras

Clp,q ∼=



Mat(2
n
2 ,R), if p− q ≡ 0; 2 mod 8

Mat(2
n−1

2 ,R)⊕Mat(2
n−1

2 ,R), if p− q ≡ 1 mod 8

Mat(2
n−1

2 ,C), if p− q ≡ 3; 7 mod 8

Mat(2
n−2

2 ,H), if p− q ≡ 4; 6 mod 8

Mat(2
n−3

2 ,H)⊕Mat(2
n−3

2 ,H), if p− q ≡ 5 mod 8.

The form of the matrix representation of the algebra shows a specific
periodicity with respect to d = p − q mod 8. Table 1 shows all Clifford
algebras Clp,q for n = p+ q from 0 to 12. We notice that for n even they are
always isomorphic to full matrix algebras with entries being real, complex
or quaternionic. In each case they are being considered as real algebras, so
that a complex number is considered to be a pair of real numbers, and a
quaternion is considered to be four real numbers.

The important element of each Clifford algebra Clp,q is its volume element,
let us denote it as ω. If ei is an orthonormal basis, then

ω = e1e2...en. (106)

For n even the volume element anticommutes with all basis vectors ei. For
n odd it always commutes - we know that it spans the center of the algebra
(cf. Sec. 1.3.1). In that case it is very important whether its square is +1 or
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−1. Lets us calculate ω2 = e1...en e1...en. We have to commute e1 that occurs
after en through en,..,e2, until we get (e1)2 at the beginning. Each time we
change the sign, because eiej = −ejei for i 6= j. Thus we will change the sign
n− 1 times. Then we have to do the same with e2. This will change the sign
n− 2 times. And so on, until we get (e1)2....(en)2. Altogether we will change
the sign (n − 1) + (n − 2)+, , ,+1 = n(n − 1)/2 times. On the other hand
e2

1....e
2
n = (+1)p(−1)q = (−1)q. Therefore we obtain:

ω2 = (−1)n(n−1)/2+q. (107)

Now, we have p + q = n, p− q = d, therefore (n(n− 1)/2 + q = (n2 − d)/2,
and so

ω2 = (−1)
1
2

(n2−d). (108)

If n is odd then n = 2k + 1,, therefore n2 = 4k2 + 4k + 1 = 4(k2 + k) + 1,
therefore (−1)n

2
= −1 and so

ω2 = (−1)
d+1

2 . (109)

If n is odd, then also d is odd. It is clear from the last formula that ω2 retains
the sign when d increases by 4. When d = 1 mod 4 we have ω2 = 1, when
d = 3 mod 4, we have ω2 = −1. We have thus showed that the following
property holds:

Proposition 1.41. For n odd we have that

ω2 .
= (e1...en)2 =

{
1, if p− q = 1 mod 4
−1, if p− q = 3 mod 4

(110)

1.3.2.2.1 The case of p + q odd and p − q = 1 mod 4 (cf. [14,
p. 22]) This is the case when ω = e1...en commutes with all the elements
of the algebra. Since ω is odd we have α(ω) = −ω, where α is the main
automorphism (involution) of the algebra (cf. Sec. 1.2.2). Let us introduce
π+, π− as follows:

π± =
1

2
(1± ω). (111)

Then π± are idempotents with sum equal 1:

(π±)2 = π±, π+ + π− = 1, π+π− = π−π+ = 0. (112)

Moreover they commute with every element of the algebra, and we have

α(π±) = π∓. (113)
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Therefore each element a can be split into two parts a = π+a+π−a, and the
whole algebra can be split into two ideals

Clp,q = Cl+p,q ⊕ Cl−p,q, (114)

where
Cl±p,q = π±Clp,q = Clp,qπ

± = π±Clp,qπ
±. (115)

Moreover the two ideals are isomorphic to each other:

α(π±) = π∓. (116)

The above reasoning explains why in Table 1, in every row with odd n and
d = 1 mod 4 we have entries of the form 2X, which is a short notation for
X⊕X, where X is one of the full matrix algebras.
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1.4 Complex Clifford algebras

In physics Clifford algebras are usually represented as matrix algebras. These
matrices act on vectors, and these vectors usually represent quantum states
of particles with spin, often they are called spinors. For reasons that are
still not completely understood quantum theory is always using complex
numbers. Therefore matrices act on vectors with complex components. If we
have some Clifford algebra Clp,q represented by matrices acting on a complex
vector space, and if we choose an orthonormal basis ei in M , we will have
p matrices with square +1 and q matrices with square −1. But then, since
the space on which these matrices are acting is complex, we can replace the
matrices ei with square −1 by iei, where i is the complex imaginary unit. In
this way we will have representation of the Clifford algebra Cln,0.

The above can be also considered in a more formal way. Given a real
Clifford algebra Clp,q we can complexify it defining ClCp,q = C⊗ Clp,q. Taking
tensor product with the field C of complex numbers means that we extend our
algebra by enlarging the field of scalars. Every element u of the complexified
algebra is now a pair (v, w) of elements of the real algebra, interpreted as
u = v + iw.

Alternatively, we can start with complexifying M by constructing MC =
C⊗M = M⊕iM , and extending by linearity the real bilinear form F (x, y) to
complex valued bilinear form FC, we the have the complex valued quadratic
form qC(x) = FC(x, x). The Clifford algebra of the complexified space for
the complexified form is the same as the complexified real Clifford algebra
discussed above.

In the complexified space MC we can always find an orthonormal basis
ei for FC with FC(ei, ej) = δij with squares of the basis vectors always being
+1. In other words, in the complex domain there is no sense to consider
Clifford algebras ClCp,q. We are discussing only Clifford algebras ClCn .

1.4.1 Matrix representation of the Clifford algebras ClCn .

We can construct Clifford algebras ClCn recursively (cf. [19]). We will see
that it is important whether n is odd or even, and that is the only property
of n that counts if we are interested in the form of the algebra. We start
with n = 1. So n is odd and the Clifford algebra, as a complex vector space,
has dimension 21 = 2. It is spanned by two 2× 2 matrices:

1 =

(
1 0
0 1

)
, e1 =

(
1 0
0 −1

)
. (117)
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Thus the whole algebra consists of matrices

u =

(
a 0
0 b

)
,

where a, b are complex numbers. Using the notation of Table 1 we have
ClC1 = 2C. For n = 2, n is even, and the Clifford algebra has complex
dimension 22 = 4 and we set

1 =

(
1 0
0 1

)
, e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
(118)

Then

e1e2 =

(
0 1
−1 0

)
, (119)

and the four matrices 1, e1, e2, e1e2 span the whole algebra Mat(2,C) of com-
plex 2× 2 matrices.

We now give the recursive formula. First we give the formula how to con-
struct the Clifford algebra for odd n = 2k+ 1 if we have already constructed
the Clifford algebra for n = 2k.

Suppose we have constructed matrices e1, ..., en for the even n = 2k Clif-
ford algebra ClCn . Then we construct the matrices generating the next ClC2k+1

using the formula

ei 7→
(
ei 0
0 −ei

)
, (i = 1, ..., 2k), (120)

e2k+1 7→
(
ikωn 0

0 −ikωn

)
, (121)

where
ωn = e1...en. (122)

We first notice that e2k+1 anticommutes with all ei for = 1, ..., k. This
follows from the fact that ei anticommute with e1...en. Indeed, in e1...en
we have odd number of ej different from a given ei. Then we notice that
e2

2k+1 = 1. This follows directly form the formula (107). In our case, for
n = 2k, it reads:

ω2 = (−1)n(n−1)/2 = (−1)k. (123)

Therefore

e2
2k+1 =

(
i2kω2

n 0
0 (−i)2kω2

n

)
=

(
1 0
0 1

)
. (124)
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The matrices above are block matrices. Notice that the size of the new
matrices, for odd n = 2k+1, is twice the size of the matrices of the preceding
Clifford algebra for n = 2k. But all the matrices for n = 2k + 1 are block
diagonal.

Now we give the formula for constructing the Clifford algebra ClC2k+2 if
we have already constructed the matrices representing the Clifford algebra
Cl2k+1. In this step the size of the matrices is not increasing. The matrices
ei for i = 1, ..., 2k + 1 remain the same, and we define the new matrix e2k+2

as

e2k+2 =

(
0 1
1 0

)
. (125)

Now we have to show that the new matrix anticommutes with all the previous
ones. But this follows immediately from the form of e2k+2 and the fact that
the other ei-s are block diagonal of the form ( A 0

0 −A ).

Remark 1.42. The recursive construction given above is one of the many
possible. For instance in Ref. [20, Sec. 4.2.1] Trautman gives a different
recursive prescription that results in real matrices, but Trautman’s formula
instead of leading to ClCn,0, leads to ClCm+1,m or ClCm,m Clifford algebras. Their

generators can then be converted to generators of ClCn,0 using the multiplica-
tion by i of those with square −1..

Theorem 1.43. If n is even, n = 2m then ClCn coincides with the full algebra
Mat(2m,C) of complex 2m × 2m matrices. If n is odd, n = 2m+ 1, then ClCn
coincides with the algebra 2Mat(2m,C) of block-diagonal 2 · 22m × 2 · 2m

matrices

Proof. The (complex) dimension of ClCn is 2n. For n odd our recursive
construction above leads to block diagonal matrices. Matrices 2m× 2m form
algebra of dimension 2m×2m = 22m and block diagonal matrices with blocks
of that dimension form the algebra of dimension 22m+1 = 2n. Therefore the
two algebras coincide. Similar reasoning applies to the case of n even. We
know ClCn is represented by matrices 2m×2m, but because of the dimensional
reasons ClCn must be the full algebra Mat(2m,C).

1.4.2 The trace and the bilinear form on Cl(q)

With the assumptions and the notation as above we have the direct sum
decomposition

Cl(q) =
n⊕
p=0

Cl(q)p. (126)
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We denote by Σ the set of all 2n ordered sequences i1 < ... < ip, (0 ≤ p ≤
n), and for each such sequence I ∈ Σ let eI be the corresponding element
eI = ei1 ...eip of the basis of Cl(q)p ⊂ Cl(q). For p = 0 we have the empty set,
and we take e∅ = 1 ∈ Cl(q)0. Now every element a of Cl(q) can be uniquely
written as

a =
∑
I∈Σ

aIeI . (127)

The coefficients aI depend on the choice of the orthogonal basis ei - except of
the coefficient a∅, the scalar part of a. We denote it T (a) and call the trace.
Thus we have defined a linear functional on the Clifford algebra Cl(q), with
values in the basic field.

Definition 1.44. We denote by T the linear functional on Cl(q) assigning
to each element a ∈ Cl(q) its scalar part a∅ ∈ Cl(q)0 in the direct sum
decomposition (126).

In the Proposition below we denote by a 7→ aτ the main anti-involution of
Cl(q) (cf. Sec. 1.2.2). It is characterized by the following properties: 1τ = 1,
xτ = x for x ∈M , (ei1 ...eip)

τ = eip ...ei1 .

Proposition 1.45. The functional T has the following properties:

(i) T (1) = 1,

(ii) T (aτ ) = T (a), ∀a ∈ Cl(q),

(iii) T (ab) = T (ba), ∀a, b ∈ Cl(q),

(iv) F(a, b)
df
= T (aτb) is a symmetric, bilinear form on Cl(q), that is non-

degenerate if F is a non-degenerate form on M. We have T (a) =
F(1, a) = F(a, 1), ∀a ∈ Cl(q).

(v) F(ab, c) = F(b, aτc) = F(a, cbτ ), ∀a, b, c ∈ C(Q).

Proof. (i) and (ii) follow immediately from the definition. In order to prove
(iii) we notice that if ei is an orthogonal basis in M , eI , I = {i1 < ... < ip}
is the corresponding basis in Cl(q), and a =

∑
I aIeI , b =

∑
bJeJ . We notice

that ei and ej anticommute for i 6= j and that eiei = F (ei, ei) are scalars.
Therefore eIeJ is proportional to eK where K contains the indices that are in
I but not in J , or in J but not in I (the symmetric difference of the sets I and
J). Therefore T (ab) = T (

∑
I aIeIbJeJ) =

∑
I aIbIT (eIeI) = T (ba). That F

is a symmetric bilinear form follows immediately from (ii) and (iii). F is non-
degenerate if and only if all F (ei, ei) are non zero, and it is immediate that this
happens if and only if all F(eI , eI) are non-zero. The remaining statements
follow easily from the definitions and the properties proven above.
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1.5 The Clifford group

We assume that M is a finite dimensional vector space over a field with
characteristic 6= 2, and that q is a nondegenerate quadratic form on M . We
denote by O(q) the group of invertible mappings g : M → M, x 7→ gx, that
leave q invariant: q(gx) = q(x), ∀x ∈M. We denote by SO(q) the subgroup
of O(q) of those g ∈ O(q) that have determinant 1.

Let Cl(q) be the Clifford algebra of q and let F (x, y) be the symmetric
bilinear form such that q(x) = F (x, x). In particular we have

xy + yx = 2F (x, y)∀x, y ∈M. (128)

The invertible elements u ∈ Cl(q) form a group. In particular every vector
x ∈ M such that q(x) 6= 0 is invertible, and every product x1...xk of such
vectors is invertible. Indeed, if q(x) 6= 0, then x2 = q(x) 6= 0, therefore x−1 =
x/q(x). And x1...xk is invertible since the product of invertible elements is
invertible.

Definition 1.46. We define the Clifford group Γ = Γ(q) to be the group of
all invertible elements u ∈ Cl(q) which have the property that uyu−1 is in M
whenever y is in M. We define Γ(q)± as the intersection of Γ(q) and Cl(q)±.

In general an arbitrary invertible element of the algebra will not have
such a property. But, for instance, if x ∈ M is invertible, then, with y ∈ M
we have

xyx−1 = (xy+ yx− yx)x−1 = 2F (x, y)x−1− y =
2F (x, y)

F (x, x)
x− y ∈M. (129)

Definition 1.47. Let x ∈ M be a vector with q(x) 6= 0. We define the re-
flection τx with respect to the hyperplane orthogonal to x as the linear trans-
formation τx : M →M defined by the formula

τx(y) = y − 2F (x, y)

F (x, x)
x. (130)

It can be easily verified that hyperplane reflections are orthogonal trans-
formations, that is F (τx(y1), τx(y2)) = F (y1, y2).

Comparing now Eqs. (129) and (130) we see that

xyx−1 = −τx(y). (131)

The following theorem about orthogonal transformations and reflections
is well known under the name of Cartan-Dieudonné theorem (see e.g. [13, p.
18].

40



Theorem 1.48 (Cartan-Dieudonné). Let M be a vector space of finite di-
mension n over the field of characteristic 6= 2, and let q be a nondegenerate
quadratic form on M. Then every orthogonal transformation σ ∈ O(q) is a
product of at most n hyperplane reflections.

Notice that if y is in the hyperplane orthogonal to x, i.e. if F (x, y) = 0,
then τx(y) = y. On the other hand, if y is proportional to x, say y = αx for
some scalar α, then

τx(y) = αx− 2F (x, αx)

F (x, x)
x = αx− 2αx = −αx = −y.

Let now u be in Γ. We define the mapping χ(u) : M →M by the formula

χ(u)(x) = uxu−1. (132)

Clearly χ(u) is a linear invertible transformation of the vector space M . In
fact χ(u) is an orthogonal transformation, that is χ(u) is in O(q). Indeed, we
have

q(χ(u)(x)) = (χ(u)(x))2 = uxu−1uxu−1 = ux2u−1 = q(x)uu−1 = q(x).

It follows easily from the very definition that χ : Γ(q)→ O(q) is a group
homomorphism, and that χ(u) = χ(u′) if and only if u′ = αu, where α is an
invertible element of center Zq) of Cl(q).

The following theorem taken from Bourbaki [5][p. 151] collects important
properties of the homomorphism χ.

Theorem 1.49. Let n be the dimension of M . If n is even, then χ(Γ) = O(q)
and χ(Γ+) = SO(q). If n is odd then χ(Γ) = χ(Γ+) = SO(q).

Every element u ∈ Γ is of the form u = αu′, where α is an invertible
element of the center Z(q) and u′ ∈ Γ is either even or odd.

The proposition below gives us the most general form of elements of Γ+.

Proposition 1.50. Every element u ∈ Γ+ is a product of an even number
of vectors xi ∈M , with q(xi) 6= 0, (i = 1, ..., 2k)

u = x1....x2k.

Proof. From the Theorem 1.49 we know that χ(u) is in SO(q). From the
Cartan-Dieudonné theorem 1.48 we know that χ(u) is a product of a certain
number of reflections. Each reflection has determinant −1, while χ(u) has de-
terminant +1, therefore chi(u) is a product of an even number of reflections.
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Let x1, ..., x2k be the vectors defining these reflections, and let u′ = x1....x2k.
Then χ(u′) = χ(u). That is because every xi implements the reflection with
the minus sign (cf. Eq. (131), and there is an even number of such reflec-
tions. It follows that u′ = αu where α is an invertible element of the center
Z(q). Replacing x1 with(1/α)x1 we get the desired form.

Remark 1.51. Suppose now u is a general element of the Clifford group
Γ. From the second part of Theorem 1.49 we know that u = αu′, where
α is an invertible element of the center. If u′ is even, then, from the last
proposition, we know that u′ is a product of an even number of invertible
vectors xi ∈M . Suppose now that u′ is odd. Let x be any invertible vector in
M . Then u′x is even, it belongs to Γ+, and therefore u′x = x1...x2k. Setting
x2k+1 = (1/q(x))x we obtain u′ = x1....x2k+1. This way we obtained a general
form of an arbitrary element of the Clifford group Γ.

1.5.1 The spinor norm

With the assumptions as above for every element u ∈ Γ(q) we define the
spinor norm N(u) by the formula

N(u) = τ(u)u, (133)

where τ is the main involution of the Clifford algebra Cl(q).
We notice that if u is in Γ, then also τ(u) is in Γ. Indeed, if, for y ∈ M ,

we have uyu−1 = y′, and since τ(u)−1 = τ(u−1), and τ(y) = y, τ(y′) = y′,
we obtain τ(u)−1yτ(u) = y′, therefore τ(u)−1 is in Γ. and, since Γ is a group,
also τ(u) is in Γ.

It follows that N is a mapping N : Γ → Γ. In fact it maps Γ into its
center: for all u ∈ Γ we have that N(u) is in the center Z(q) of Cl(q). The
proof goes as follows: from uyu−1 = y′ we get uy = y′u. Applying τ to both
sides we get yτ(u) = τ(u)y′. Multiplying by u from the right we obtain

yτ(u)u = τ(u)y′u = τ(u)uu−1y′u = τ(u)uy.

Therefore N(u) commutes with all y ∈ M ⊂ Cl(q), and thus it commutes
with all elements of the algebra Cl(q).

From the definition it follows immediately that if u ∈ Γ and α 6= 0 is a
scalar, then

N(αu) = α2N(u). (134)

The next important property of the spinor norm N is that it is a group
homomorphism, namely that N(st) = N(s)N(t) for all s, t ∈ Γ. Indeed, using
the fact that N(s) is in the center of the algebra, we have

τ(st)st = τ(t)τ(s)st = τ(t)N(s)t = N(s)τ(t)t = N(s)N(t).
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All the above properties of N can be also deduced directly from a general
form of elements of Γ discussed in Remark 1.51.

Definition 1.52. The following groups are called spin groups:

Pin(q) := {s ∈ Γ(q)+ ∪ Γ(q)− : N(s) = ±1}
Spin(q) := {s ∈ Γ(q)+ : N(s) = ±1} (135)

Spin+(q) := {s ∈ Γ(q)+ : N(s) = +1}.

1.5.2 Example |Spin(3) ' SU(2)

We consider the Clifford algebra Cl3 in the matrix realization as in Sec.
1.3.2.1.6. We have Cl3 ' Mat(2,C) with the main automorphism α realized
as

α :

(
a b
c d

)
7→
(
d̄ −c̄
−b̄ ā

)
(136)

and the main anti-automorphism as

τ(a) = a∗, u ∈ Mat(2,C), (137)

as in Eqs. (75), (76).
The even subalgebra consists of 2 × 2 complex matrices u = ( a bc d ) such

that α(u) = u, that is
ā = d, b̄ = −c. (138)

The three vectors of the orthonoarmal basis are represented by Pauli
matrices σ1, σ2, σ3. Since we have σ1σ2 = iσ3, σ2σ3 = iσ1, and σ3σ1 = iσ2

the even subalgebra is generated by the matrices iσ − i, (i = 1, 2, 3) with
squares −1 - it is isomorphic to the algebra of quaternions.

The condition for the Spin group is N(u) = ±1, where N(u) = τ(u)u.
In our case N(u) = u∗u, and u∗u is a Hermitian matrix with nonnegative
eigenvalues. Therefore in our case Spin(3) = Spin+(3) and N(u) = 1 means
that u∗u = 1 i.e. u is a unitary matrix. Explicitely, with u = ( a bc d ) we have:

(i) āa+ c̄c = 1,

(ii) āb+ c̄d = 0,

(iii) b̄a+ d̄c = 0,

(iv) b̄b+ d̄d = 0.
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The second and the third equations are not independent, one being the com-
plex conjugate of the other. Substituting now the conditions in Eqs. 138 we
find that (ii) and (iii) are satisfied automatically, while (i) and (iv) reduce
to just one condition: ad− bc = 1, or det(u) = 1 Thus u is in Spin(3) if and
only if u is unitary of determinant 1. The group of all such matrices, the
special unitary group in two complex dimensions, is denoted SU(2).

1.5.3 Example: Spin and Pin for signatures (3, 1) and (1, 3)

There are two conventions for defining the standard quadratic form for the
Minkowski space-time of special relativity. It is also called the Minkowski
space metric because the associated bilinear form defines the flat Rieman-
nian metric of the Minkowski spacetime. The (3, 1) signature, where space
enters with positive sign Euclidean metric, is sometimes called West Coast
convention, perhaps because Feynman was using it at Caltech. The opposite
convention, when the plus sign is reserved for the time (or energy) component
is then referred to as East Coast convention, because Schwinger was using it
while at Harvard and MIT9.

Minkowski space metric has been introduced be Einstein in his formu-
lation of special relativity theory because in this metric the points on the
hypersurface q(x) = 0 define the light cone with apex at the origin of coordi-
nates. From this point of view it does not matter which convention is being
used. In Secs. 1.3.2.1.9 and 1.3.2.1.10, when discussing Clifford algebras
Cl3,1 and Cl1,3 we used coordinates (x1, x2, x3, x4) for the (3, 1) metric and
coordinates (x0, x1, x2, x3) for the (1, 3) metric. Here, we want to compare
the two cases, therefore we will use coordinates (x0, x1, x2, x3) for both sig-
natures. The order of coordinates and their naming depends on convention.
10

We introduce two bilinear forms, η and η̂ defined by the matrices

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , η̂ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (139)

9At the time of writing these notes a discussion of this subject is available on Pe-
ter Woit’s blog entry “The West Coast Metric is the Wrong One” https://www.math.

columbia.edu/~woit/wordpress/?p=7773&cpage=1
10The notation Clp,q in the Clifford algebra means that there are p pluses and q minuses

in the quadratic form, and it has nothing to do with order of coordinates, which can be
arbitrary.
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or, in short

η = diag(−1, 1, 1, 1), η̂ = diag(1,−1,−1,−1) = −η. (140)

The Lorentz group O(3,1) is the same as O(1,3) - it consists of 4 × 4 real
matrices L = (Lαβ) leaving the bilinear form η (or η̂) invariant: LTηL = η,
or

Lβ
αηαγL

γ
δ = ηβδ, (141)

where LT is the transpose of L: Lβ
α = (LT )α

β
. The special Lorentz groups

SO(3,1) and SO(1,3), consisting of Lorentz matrices of determinant one are
also the same. So are the time orientation preserving subgroups SO↑(3, 1) =
SO↑(1, 3) consisting of special Lorentz matrices that have L0

0 > 0. But we
know that the Clifford algebras for the two signatures are not isomorphic.
We have Cl3,1 ' Mat(4,R) but Cl1,3 ' Mat(2,H). Thus the question arises
whether this difference of Clifford algebras may have some physical implica-
tions? The interested reader may wish to consult Ref. [2]

1.5.3.1 The group Spin+(1, 3) ' SL(2,C) We start with identifying
explicitely the spin group Spin+(1, 3) using the definition given in Eq. 135,
and using the Weyl matrix representation of Cl1,3 - cf. Eq. 99. Here we
recall it in a block matrix form using Pauli matrices - see Eq. (74):

Γ0 =

(
0 σ0

σ0 0

)
, Γi =

(
0 σi
−σi 0

)
, (i = 1, 2, 3).

We can write it in one formula if we use the main automorphism α of the
Clifford algebra Cl3 which changes the sign of the three Pauli matrices:

Γi =

(
0 σi

α(σi) 0

)
, (i = 0, .., 3). (142)

Thus every vector x ∈M ⊂ Cl1,3 can be represented as a block matrix

x =

(
0 X

α(X) 0

)
, (143)

where X =
∑3

i=0 x
iσi is a Hermitian 2× 2 matrix.

In order to identify the group Spin+(1, 3) we will need to calculate the
spin norm, and to calculate the spin norm we will need the explicit form
of the main anti-automorphism τ . The explicit form of τ depends on the
representation, and for the Weyl representation finding τ is rather easy. The
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Hermitian conjugate is an involutive (i.e. its square is the identity) anti-
automorphism of the full matrix algebra, but it does not suit our purpose
because the matrices Γi for i = 1, 2, 3 are anti-Hermitian, while Γ0 is her-
mitian. But adding the conjugation by Γ0 does the job. Therefore, for the
Weyl representation, we have

τ(u) = Γ0u
∗Γ−1

0 , u ∈ Cl1,3. (144)

We then need the explicit form of the even subalgebra Cl+1,3. It is generated
by the identity matrix, by the products ΓiΓj, (i < j), and by the matrix
ω = Γ0Γ1Γ2Γ3. We know from Eq. (143) that Γi are anti-diagonal block
matrices of the form (

0 X
α(X) 0

)
, (145)

where X is a Hermitian 2 × 2 matrix and α(X) is the same as defined by
Eq. (75) in the discussion of the Clifford algebra Cl3. Products of two such
matrices will have the form(

Xα(Y ) 0
0 α(X)Y

)
. (146)

But, since α is an automorphism with α2 = id, we can write these products
as (

A 0
0 α(A)

)
, (147)

where A is a complex 2 × 2 matrix. The matrix representing the identity
1 and the matrix representing ω will also have this form. Matrices of this
form build a 4-dimensional real vector space, and the even algebra Cl+1,3 is

also 8− dimensional. Therefore the even subalgebra Cl+1,3 is represented by
matrices of the form (147), where A ∈ Mat(2,C).

In order to identify the Spin+ group we have to look now at the condition
N(u) = 1 for u ∈ Cl+1,3. Setting

u =

(
A 0
0 α(A)

)
, (148)

and using Eq. (144) we obtain

τ(u) =

(
0 1
1 0

)(
A∗ 0
0 α(A)∗

)(
0 1
1 0

)
=

(
α(A)∗ 0

0 A∗

)
, (149)

Therefore for N(u) = τ(u)u we obtain:

N(u) =

(
α(A)∗ 0

0 A∗

)(
A 0
0 α(A)

)
=

(
α(A)∗A 0

0 A∗α(A)

)
. (150)
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Using now Eqs. (76)-(79) we obtain

N(u) =

(
det(A)1 0

0 det(A∗)1

)
. (151)

It follows that for the matrices from the even subalgebra the condition
N(u) = 1 is equivalent to det(A) = 1 - the condition that characterizes
the matrices from the group SL(2,C).

In order to identify the group Spin+ we still need to implement the con-
dition defining the Clifford group, that is the condition uxu−1 ∈ M for all
x ∈M. However, in our particular case at hand, we will see that this condi-
tion is satisfied automatically if the condition det(A) = ±1 is satisfied.

With x as in Eq. (143) and u as in Eq. (148) we obtain

uxu−1 =

(
0 AXα(A)−1

α(AX)A−1 0

)
. (152)

Now, det(A) = ±1 is the same as AAν = Aα(A∗) = ±1 i.e. α(A)−1 = ±A∗.
Therefore

uxu−1 =

(
0 X ′

α(X ′) 0

)
, (153)

where X ′ = ±AXA∗. It is clear that X ′ is Hermitian if X is Hermitian.
Therefore the condition uxu−1 ∈M is indeed satisfied.

The same reasoning as above applies to the group Spin(1, 3). We conclude
that Spin(1, 3) can be identified with the group of all 2× 2 complex matrices
of determinant ±1.

If det(A) = −1, then the orthogonal transformation in M is implemented
as X 7→ X ′ = −AXA∗. Since product of two transformations with deter-
minant −1 is a transformation with determinant 1, it follows that every
transformation characterized by det(A) = −1 is a product of one particular
transformation with det(A) = 1, and some element of SL(2,C) that imple-
ments a special ortochronous Lorentz transformation. We can chose σ3 as a
particular matrix with determinant −1. In that case, if X =

∑3
i=0 x

iσi, then
X ′ = −σ3Xσ

∗
3 has reversed coordinates x0 and x3. Therefore transformations

from the group Spin1,3 implement orthogonal transformations from the group
SO(1, 3), including time inversions, but always associated with inversions of
some space axes, so that the determinant of the Lorentz transformation is
always 1.

Even better it is to select the volume element ω = Γ0Γ1Γ2Γ3, which i
even and has N(ω) = −1. It anticommutes with all four Γ-s therefore it
implements the PT transformation that reverses the signs of all three space
coordinates and reverses the direction of time: X 7→ X ′ = −X.
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1.5.3.2 The group Spin(3, 1) ' Spin(1, 3) While discussing the Clifford
algebra Cl3,1 in Sec 1.3.2.1.9we were using the Majorana (real) representation.
Here it will more convenient to use a very simple modification of the Weyl
antidiagonal representation. Namely we set Γ̃j = iΓj, (i = 0, ..., 3) and the
matrices Γ̃ evidently represent the generators of Cl3,1 - they anticommute
and Γ̃2

i = −Γ2
i . For the identification of Spin3,1 we will need the main anti-

automorphism of Cl3,1 in this representation - will denote it as τ̃ . While
matrices Γi are all Hermitian, the matrices Γ̃i are all anti-Hermitian. We have
τ(Γ̃i) = −Γ̃i, but we need τ̃(Γ̃i) = Γ̃i. We need a matrix that anticommutes
with all anti-diagonal matrices. Such a matrix exists, we can take

C̃ =

(
1 0
0 −1

)
= −iω = −iω̃. (154)

Therefore
τ̃(u) = C̃τ(u)C̃−1. (155)

The products of two Γ̃ matrices differ only by a sign form the products of
the corresponding Γ matrices. Therefore the even subalgebras Cl1,3

+ and
Cl3,1

+ are the same. Moreover, the embedding of M into the two Clifford
algebras are simply related M̃ = iM, so that the conditions uMu−1 = M
and uM̃u−1 = M̃ are the same. Finally, we need to calculate the spinor norm
Ñ(u) when applied to the elements of Cl3,1

+. But C̃ commutes with all block
diagonal matrices, therefore Ñ(u) = N(u) for u ∈ Cl+3,1. We conclude that
the groups Spin3,1 and Spin1,3 are isomorphic. In fact, in our realization as
groups of matrices, they are identical.

1.5.3.3 The groups Pin(1, 3) and Pin(3, 1) are different The elements
Γ0 and Γ̃0 = iΓ0 implement the same O(1, 3) = O(3, 1) transformation - space
inversion P . They belong to the groups Pin(1, 3) and Pin(3, 1) respectively.
But Γ2

0 = 1, while Γ̃2
0 = −1. That is enough to see that the groups Pin(1, 3)

and Pin(3, 1) are different, they are not isomorphic. Whether this fact may
have some physical implication is not clear. Ref. [2] indicates that indeed
that may be the case, while Ref. [11] proposes a different perspective.

2 Clifford algebra on multivectors

We assume, in this section, that M is vector space over reals or complex, not
necessarily finite dimensional. Let F (x, y) be a bilinear form (not necessarily
symmetric) on M . We have seen in Proposition 1.26 that the mapping λ̄F
maps the Clifford algebra C(q′) of the quadratic form q′(x) = q(x) +F (x, x)
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onto the Clifford algebra Cl(q). It is a vector space isomorphism, with the
inverse mapping being (λ̄F )−1 = λ̄−F : Cl(q) → C(q′). Let us take the
particular case of q′ = 0 in which case the algebra C(q′) becomes identical
to the exterior algebra Λ(M). Elements of the exterior algebra are called
multivectors and the multiplication of multivectors in the exterior algebra is
traditionally denoted by the wedge symbol x ∧ y. But using the λ̄ mapping
we can also transport back to Λ(M) the multiplication from the Clifford
algebra Cl(q). We will now derive the corresponding formula. Let us take
x ∈ M ⊂ Λ(M) and u ∈ Λ(M). Then λ̄−F (x) and λ̄−F (u) are in Cl(q). Now
we multiply λ̄−F (x) and λ̄−F (u) in c(q) and transport back their product
λ̄−F (x)λ̄−F (u) to Λ(M) using λ̄F . We obtain the multiplication rule of the
Clifford algebra Cl(q) expressed in terms of multivectors:

xu = λ̄F (λ̄−F (x)λ̄−F (u)). (156)

Notice that we identify the vectors of M with their images in Cl(q), therefore
we can take λ̄−F (x) = x. We can then use Eq. (33):

xu = λ̄F (xλ̄−F (u)) = īFx (λ̄F (λ̄−F (u))) + x ∧ λ̄F (λ̄−F (u)), (157)

or
xu = x ∧ u+ īFx (u). (158)

We recall the action of the antiderivation īFx

(i) For all x ∈M we have

īFx (1) = 0, (1 ∈ Λ(M)) , (159)

(ii) For all x, y ∈M ⊂ Λ(M), w ∈ Λ(M), we have

īFx (y ∧ w) = F (x, y)w − y ∧ īFx (w). (160)

The bilinear form F above is in general non-symmetric. It can be split
as a sum of its symmetric part Fs(x, y) = Fs(y, x) and antisymmetric part
Fa(x, y) = −Fa(y, x):

F (x, y) =
1

2
(F (x, y) + F (y, x)) +

1

2
(F (x, y)− F (y, x))

= Fs(x, y) + Fa(x, y). (161)

From Eq. (160) we get

xy + yx = 2Fs(x, y), (162)

xy − yx = 2(x ∧ y + Fa(x, y)).
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In particular Eq. (162) implies x2 = Fs(x, x). Therefore the multiplication de-
fined in Eq. (158) determines the Clifford algebra Cl(q) with q(x) = Fs(x, x),
and q does not depend at all on the antisymmetric part Fa of F. And yet Eq.
(158) defines different multiplications for different antisymmetric parts of F
even if the symmetric parts are the same. However, it follows immediately
from the universal property of the Clifford algebras that all these algebras
corresponding to different antisymmetric parts of F are isomorphic one to
another, as they are all Clifford algebras with the same q. Therefore it is
somewhat surprising that in Ref. [1] Ablamowicz and Lounesto decided to
take the trouble to verify this obvious property using a computer. They
wrote

“We explicitly demonstrate with a help of a computer that
Clifford algebra C(B) of a bilinear form B with a non-trivial anti
symmetric part A is isomorphic as an associative algebra to the
Clifford algebra C(Q) of the quadratic form Q induced by the
symmetric part of B.” ”

Moreover they attribute the formula (158 defining the Clifford multiplication
for an arbitrary, possibly degenerate and not necessarily symmetric bilinear
form on multivectors to Oziewicz [17] instead of referring to the classical old
algebra book of Bourbaki, originally published by Hermann in 1959 [3].

2.1 The standard case of Cl(q)

With the assumptions as above let F be the symmetric bilinear form with
q(x) = F (x, x). We then realize Cl(q) on Λ(M) using the formulas (158)-
(160). For x, y ∈M Eqs. (162) can then be written as

F (x, y) =
1

2
(xy + yx),

x ∧ y =
1

2
(xy − yx). (163)

Adding the two equations together we get

xy = x ∧ y + F (x, y), (164)

which is another way of writing Eq. (158) for u = y. [5, Exercise 3, p. 154]

Proposition 2.1. 1. If x, x1, ..., xn ∈M then

īFx (x1 ∧ ... ∧ xn) =
n∑
i=1

(−1)i−1F (x, xi)x1 ∧ ...xî... ∧ xn, , (165)

where the symbol xî means that xi is omitted from the product.
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2. If xi ∈ M , (i = 1, ..., n) are mutually orthogonal (i.e if F (xi, xj) = for
i 6= j) then

x1...xn = x1 ∧ ... ∧ xn. (166)

Proof. Setting y = x,w = x1 in Eq. (160) we get Eq. (165) for n = 1.
Assuming that it holds for n − 1, setting w = x2 ∧ ... ∧ xn, from Eq. (160)
we get

īFx (x1 ∧ x2 ∧ ... ∧ xn) = F (x, x1)x2 ∧ ... ∧ xn − x1 ∧ īFx (x2 ∧ ... ∧ xn)

= F (x, x1)x2 ∧ ... ∧ xn − x1 ∧
n∑
i=2

(−1)i−2F (x, xi)x2 ∧ ...xî... ∧ xn

=
n∑
i=1

(−1)i−1F (x, xi)x1 ∧ ...xî... ∧ xn.

(167)

To prove (166) we observe that it is true for n = 2 owing to Eq. (158).
Assuming that it holds for n− 1, from Eq. (158) we have

x1(x2...xn) = x1(∧... ∧ xn)− īx1(x1 ∧ ... ∧ xn) = x1 ∧ ... ∧ xn, (168)

where we have used the orthogonality assumption and Eq. (165).

Corollary 2.2. For any finite number x1, ..., xn in M we have:

x1 ∧ ... ∧ xn =
1

n!

∑
σ

(−1)σ xσ(1)...xσ(n), (169)

where the sum on the right is over all n! permutations σ of (1, ..., n), and
(−1)σ is the sign of the permutation: (+1) for even, (−1) for odd permuta-
tion.

Proof. For n = 2 Eq. (169) is the same as Eq. (163). But we can prove
it in a different way showing the idea of the proof for general n. We can
choose an orthogonal system of vectors e1, ..., em such that x1, x2 are linear
combinations of these vectors:

x1 = xi1ei, x2 = xj2ej,

where Einstein convention is used for the sum over the repeated indices, here
i and j. Thus for the right-hand side of Eq. (168) we have

RHS =
1

2

∑
σ

(−1)σxσ(1)xσ(2) =
1

2
(x1x2 − x2x1) =

1

2
xi1x

j
2(eiej − ejei).
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It is clear that the sum over i, j can be reduced to i 6= j. But then, according
to Eq. (169) eiej = ei ∧ ej, thus

RHS =
1

2
xi1x

j
2(ei ∧ ej − ej ∧ ei) =

1

2
xi1x

j
2(2 ei ∧ ej) = x1 ∧ x2.

Exactly the same method works for general n

RHS =
1

n!

∑
σ

(−1)σ xσ(1)...xσ(n) =
1

n!
xi11 ...x

in
n

∑
σ

(−1)σeiσ(1)...eiσ(n)

=
1

n!
xi11 ...x

in
n

∑
σ

(−1)σeiσ(1) ∧ ... ∧ eiσ(n) =
1

n!
xi11 ...x

in
n n! ei1 ∧ ... ∧ ein

= x1 ∧ ... ∧ xn.

(170)

Corollary 2.3. The anti-automorphism τ is the same for the exterior algebra
Λ(M) and for the Clifford algebra Cl(q) defined on Λ(M) as in Eq. (164).

Proof. If {ei} is an orthogonal basis, then ei1 ...eip , i1 < ... < ip form a basis
in Cl(q). But then

ei1 ....eip = ei1 ∧ ... ∧ eip
form a basis for Λ(M), and τ acts the same way on these homogeneous
elements by reversing the order.

In Proposition 1.45 we defined the bilinear form F on Cl(q) as

F(ab) = (aτb)0, (171)

where (aτb)0 is the scalar (grade zero) part of the product aτb.

Proposition 2.4. For x1, ..., xp, y1, ..., yp in M we have

F(x1 ∧ ... ∧ xp, y1 ∧ ... ∧ yp) = det(F (xi, yj)). (172)

Proof. Both sides are multilinear and antisymmetric with respect to xi and
yj. Therefore it is sufficient to verify the equality for ordered basis vectors
ei. Then for the left hand side we get a non-zero expression only for

F(ei1 ∧ ... ∧ eip , ei1 ∧ ... ∧ eip) = q(ei1)...q(eip). (173)

And exactly the same expression we get for the determinant of the diagonal
matrix on the right hand side.
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2.2 Maxwell equations

In a flat space-time Maxwell equations in a relativistic form can be repre-
sented as follows (Cf. e.g. [21, p. 166]):

∂iFkl + ∂kFli + ∂lFik = 0, (174)

ηjk∂jFik = si, (175)

where ηjk is the bilinear form defining the Minkowski metric, Fij = −Fji is the
electromagnetic field tensor, si is the current co-vector (differential 1-form),
∂iFjk stands for ∂Fjk/∂x

i, and we use the Einstein summation convention.
We will show that Eqs. (174), (175) can be written as one equation

/∂F = s, (176)

where F and s are Clifford algebra valued functions and /∂ is the Dirac oper-
ator.

Let M be the Minkowski space with coordinates xi. The vectors (strictly
speaking “tangent vectors”, but we are not going to dive into differential
geometry here) and contravariant tensors have components with upper in-
dices, for instance vi, while covariant tensors have components with lower
indices, for instance si. We assume the space of covectors is equipped with
the flat Minkowski metric ηij. We denote by ei the orthonormal basis of cov-
ectors ei = dxi, and let Cl(η) be the corresponding Clifford algebra. Vectors
ei, together with the relations eiej + ejei = 2ηij generate Cl(η). We realize
this Clifford algebra product on the space of differential forms Λ(M∗), as we
have realized it on multivectors Λ(M) before. Electromagnetic field tensor
is represented by a differential form F ∈ Λ2(M∗) of the second order:

F =
1

2
Fkle

k ∧ el. (177)

The electric current is represented by 1-form s ∈ Λ1(M∗):

s = sl e
l. (178)

Both Fij and si are assumed to be functions of coordinates Fij = Fij(x
k),

si = si(x
k). The Dirac operator /∂ acting on functions with values in Cl(η) is

defined as
/∂ = ei∂i. (179)

We now analyze Eq. (176) and show that it is equivalent to the pair of
equations (174), (175). We have

/∂F =
1

2
∂iFkl e

iek ∧ el, (180)
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and we will now calculate eiek ∧ el using Eqs. (158) and (165). We have

ei ekel = ei ∧ ek ∧ el + īηei(e
k ∧ el), (181)

and
īηei(e

k ∧ el) = ηikel − ηilek. (182)

When contracted with the antisymmetric Fkl the two terms will give the same
contribution so that the factor 1/2 will disappear. Therefore:

/∂F ==
1

2
∂iFkl e

i ∧ ek ∧ el + ηik∂iFkl e
l. (183)

2.3 The Dirac operator

With the assumptions as in above, in Sec. 2.2, we will now analyze the Dirac
operator acting on a general homogeneous element Fp = 1

p!
Fi1....ipe

i1∧...∧eip ∈
Λp(M∗). where Fi1....ip = Fi1....ip(x) are antisymmetric with respect to the
indices x1, ..., ip functions of the coordinates x1, ...., xn. In other words F is a
p-form on M and Fi1....ip(x) are its components, which are functions om M .
The Dirac operator /∂ acting on Fp will have, as before, two parts:

/∂Fp =
p+1

F +
p−1

F , (184)

where
p+1

F =
1

p!
∂iFi1...ip e

i ∧ ei1 ∧ ... ∧ eip (185)

is a (p+ 1)-form, and

p−1

F =
1

p!
∂iFii...ip ī

F
ei(ei1 ∧ ... ∧ eip) (186)

is a (p− 1)-form. If p = n then
p+1

F = 0 and if p = 0 then
p−1

F = 0. Moreover,

the first part,
p+1

F does not depend on the bilinear form F . In fact, it is known
under the name “exterior derivative” and denoted as d. Thus we have

p+1

F = dFp. (187)

Since dFp is a (p+ 1)-form, it is expressed in terms of its components as

dFp =
1

(p+ 1)!
(dFp)i1...ip+1 ei1 ∧ ... ∧ eip+1). (188)
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In order to get the expression for the components (dFp)i1...ip+1 we need to
antisymmetrize the right hand side in Eq. (185). We first change the names
of the summation indices:

p+1

F =
1

p!
∂i1Fi2...ip+1 e

i1 ∧ ei2 ∧ ... ∧ eip+1 , (189)

and then antisymmetrize by replacing ∂i1Fi2...ip+1 with

1

p+ 1

p+1∑
k=1

(−1)k−1∂ikFi1...îk...ip+1
.

We obtain

p+1

F =
1

(p+ 1)!

p+1∑
k=1

(−1)k−1∂ikFi1...îk...ip+1
ei1 ∧ ei2 ∧ ... ∧ eip+1 , (190)

and therefore

(dF)i1....ip+1 =

p+1∑
k=1

(−1)k−1∂ikFi1...îk...ip+1
. (191)

Eq. (191) is the standard expression for the exterior derivative of a p-form.
Notice that d2 = 0 because the expression for the components of d2F will
contain second derivatives of the components of F. The components of d2F
should be all antisymmetric, but mixed derivatives are symmetric. Therefore
d2F must be zero.

3 Deformations

Here we will expand the method used in the previous section to include more
general deformations of Clifford algebras. We will start with presenting the
facts discussed before from a somewhat more general perspective. We will
start assuming that M is a vector space over the field R of an arbitrary
characteristic (thus including characteristic 2).

3.1 The additive group of bilinear forms Bil(M)

We will deal with three important sets: the set of all bilinear forms Bil(M),
the set of all alternate forms Alt(M), and the set of all quadratic forms
Quad(M).11 Each of these sets is, in fact, a vector space. But we will be

11I am following the notation used in Ref. [8].
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Alt(M)Bil(M)

Quad(M)

q

Fq

πB

Figure 1: Principal bundle Bil(M) of bilinear forms over the base Quad(M)
of quadratic forms, with structure group Alt(M) of alternate forms. The
fiber Fq over q consists of all bilinear forms F (x, y) such that q(x) = F (x, x),
i.e. q = πB(F ).

mainly interested that these sets are Abelian groups with respect to the ad-
dition “+”. We can associate with these sets the following diagram:

Alt(M) −→ Bil(M)
πB−→ Quad(M), (192)

meaning that Alt(M) is a subgroup of Bil(M) and that every quadratic form
q(x) can be obtained from some bilinear form F (x, y) via q(x) = F (x, x), with
F and F ′ determining the same q(x) if and only if F ′(x, y)−F (x, y) = A(x, y)
where A(x, y) is alternate, i.e. A(x, x) = 0 for all x ∈ M. This last property
has been discussed in Remark 1.12. The mapping πB associates with every
bilinear form F the quadratic form q(x) = F (x, x).

The sequence in Eq.(192) is called exact, which means that the map
Alt(M) → Bil(M) is injective, and that Alt(M) is the kernel of the map
πB. What we have can be summarized by saying that we have a principal
bundle - the group Bil(M) over the base Quad(M) - the homogeneous space
Quad(M) = Bil(M)/Alt(M), as depicted in Fig. 1.

Remark 3.1. Here and in the following we are using the language of fiber
bundles in an informal way, without paying any attention whatsoever to topol-
ogy, since topology is not needed in these general algebraic considerations.
Topology will come back when we will specify the arbitrary field R to become
real or complex numbers.
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fibre bundle

base manifold

fibre

Figure 2: An artistic 3D drawing of a fiber bundle - inappropriate in our
context

Sometimes fiber bundles are graphically represented three dimensionally
as in Fig.2. That representation is inappropriate in our case, as it may
suggest that each fiber has a distinguished point. But this is not the case in
general. While in Remark 1.12 we have indeed constructed a bilinear form
from a quadratic form, the construction there was dependent on the choice
of a basis in M. Of course there is a distinguish point on each fiber when the
field R admits division by 2 - in that case for each quadratic form there is a
unique symmetric form in each fibre, namely F (x, y) = 1

2
Φ(x, y), where Φ is

the bilinear form associated with q.

3.2 The bundle of Clifford algebras

For every quadratic form q ∈ Quad we have constructed (see Section 1.2) the
Clifford algebra Cl(q) = T (M)/J(q). We denote by C(M) the collection of
all these Clifford algebras:

C(M) =
⋃
{Cl(q) : q ∈ Quad(M)}. (193)

Then to give C(M) the structure of a vector bundle over the base Quad(M),
we need to provide it with local coordinates that enable us represent Cl(M)
as a cartesian product of the base and of a vector space. In fact in our case
we can provide not only local but also global coordinates. To this end let
{ei}i∈I be a basis in the vector space M, with a well ordered index set I. We
the have the following important result (see [3, Theorem 1, p. 145]:

Theorem 3.2. Assume that {ei}i∈I is a basis in M, with a well ordered index
set I. For every finite part H of I let us set eH = ei1 · · · ein where {i1, · · · , in}
is the ordered sequence of all elements of H: i1 < · · · < in. Then the elements
eH , with H running through all finite subsets of I form a basis for Cl(q)
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Proof. We follow the proof as given in Ref. [3, Theorem 1, p. 145], with
only slight adaptations. The proof assumes that we already know that the
result holds for the exterior algebra Λ(M) = Cl(0), within which context it
is a standard property. Therefore eH = ei1 ∧ · · · ∧ ein form a basis in Cl(0).
Given now q ∈ Quad(M) we construct bilinear form F (x, y) as in Remark
1.12, but this time for the form −q, and with reversed order, that is with
F (ei, ei) = −q(ei) ,F (ei, ej) = 0 for i < j and F (ei, ej) = −Φ(ei, ej) for i > j.
In particular we have q(x) + F (x, x) = 0. The map λ̄F of Proposition 1.24
provides now vector space isomorphism λ̄F : Cl(0) → Cl(q). We will now
prove that

λ̄F (eH) = λ̄F (ei1 ∧ · · · ∧ ein) = ei1 · · · ein , (194)

where the multiplication on the right hand side is that in Cl(q). The proof
of this last property is by induction. It is evident for n = 1, since λ̄F (x) = x
for every x ∈ M . Suppose it holds for all sequences i1 < · · · < in. We will
show that then it also holds for sequences of length n + 1. We will use the
fundamental property of λ̄F in Eq. (33. Suppose H has n+ 1 elements, and
let j be its first element, with H = {j, i1, · · · in}, and j < i1 < · · · < in. Using
Eq. (33 we have

λ̄F (eH) = ejλ̄F (ei1 ∧ · · · ∧ ein) + iFej(λ̄F (ei1 ∧ · · · ∧ ein)). (195)

By the induction hypothesis we have λ̄F (ei1 ∧ · · · ein) = ei1 · · · ein . Therefore

λ̄F (eH) = ejei1 · · · ein + īFej(ei1 · · · ein). (196)

But now we use Eq. (26) and find the last term vanishes, because expanding it
we will be getting terms with F (ej, eik) which vanish by the very construction
of F.

3.3 Automorphisms and deformations in the bundle of
Clifford algebras

We have arrived at the following picture: We have action, let us denote it by
λ̃, of the additive group of bilinear forms Bil(M) on the manifold Quad(M)
the stability subgroup being Alt(M), the additive group of alternate forms:

λ̃ : Bil(M)×Quad(M) → Quad(M)

λ̃(F, q) = q′, (197)

q′(x) = q(x)− F (x, x).
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Λ(M)Cl(M)

Quad(M)

q

Cl(q)

πC

Figure 3: Vector bundle Cl(M) of Clifford algebras Cl(q) over the base
Quad(M) of quadratic forms, with the exterior algebra Λ(M) as a typical
fibre. Global fibre coordinates are provided by selecting a basis in M , as
shown in Theorem 3.2

12 The group Bil(M) acts on the basis on the basis of the vector bundle
Cl(M) whose fibers are Clifford algebras Cl(q). And we know that his action
admits what is called a lifting, and we denote it with the letter λ̄, to the
bundle Cl(M) :

λ̄(F, u) = λ̄−F (u), u ∈ Cl(q), (198)

where λ̄F have been defined in Proposition 1.24. Now λ̄(F,Cq) = C(λ̃(q)) =
C(q′). Thus fibers are mapped onto fibers by linear isomorphisms - see Fig.
4. For F ∈ Alt(M) we have q′ = q and so each fiber Cl(q) is mapped linearly
onto itself.

In each Clifford algebra Cl(q) we can now define a family of its deforma-
tions parameterized by bilinear forms F ∈ Bil(M). We do it the same way as
we have introduced Clifford algebra structure in the exterior algebra. Given
F ∈ Bil(M) we define new algebra product ·F in Cl(q) using the formula:

u ·F w = λ̄F (λ̄−F (u)λ̄−F (w)), (u,w ∈ Cl(q)). (199)

The new product so defined is automatically associative.13 The formula

12Here we have defined the action as a subtraction rather than as an addition because of
the convention already taken in Proposition 1.24, where λ̄F was defined as a mapping from
C(q′) to Cl(q) rather than from Cl(q) to C(q′). Here we are exchanging in our notation q
and q′

13It is quite general and almost evident.Let A be a set, B be an algebra, and T : A→ B
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Quad(M)

q q′

Cl(q′)Cl(q)
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Figure 4: Every bilinear form F ∈ Bil(M) defines a automorphism of the
vector bundle of Clifford algebras mapping linearly fibers onto fibers. Alter-
nate forms in Alt(M) ⊂ Bil(M) define vertical automorphisms - they do not
move points on the base and map every fiber into itself. Such automorphisms
are also called gauge transformations

defining explicitly the new multiplication in Cl(q) can be derived exactly the
same way as we have derived the formula (158:

x ·F u = xu+ īFx (u). , (200)

where, for x, y ∈M , u,w ∈ Cl(q) we have

īFx (yw) = F (x, y)w − yīFx (w), (201)

and the multiplications on the right in (200) and on the left in (201) are in
Cl(q).

In Ref. [10], in Section 4.7, Deformations of Clifford algebras, the formula
completely equivalent to Eq. (158) is derived using rather advanced algebraic
manipulations and associativity necessitates a complicated almost one page
proof.

be a linear map. Let · be the product defined in A as a · b = T−1(TaTb). Then

(a · b) · c = T−1(T (T−1(TaTb))Tc ) = T−1(TaTb Tc )

, and associativity follows from the associativity of the product in B.
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The formula given in Ref. [10] also involves a certain exponential. We will
see how exponential enters in our case in a way analogous to our discussion
of the mapping λF as an exponential.
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