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Abstract

Time of arrival in quantum mechanics is discussed in two versions: the classical

axiomatic “time of arrival operator” introduced by J. Kijowski and the EEQT

method. It is suggested that for free particles the two methods may lead to the

same result. On the other hand the EEQT method can be easily geometrized

within the framework of Galilei-Newton general relativistic quantum mechanics

developed by M. Modugno and collaborators, and that it can be applied to non–

free evolutions. The way of geometrization of irreversible quantum dynamics

based on dissipative Liouville equation is suggested.
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1. Introduction: Why “time”

In standard quantum mechanics time is a parameter in Schrödinger’s equa-

tion for the wave functions. Wave functions there should be square integrable

over space. We rarely integrate over time. So, there is no canonical “time oper-

ator” in quantum mechanics, while we do have position, momenta, and energy

operators. There is an evident asymmetry between space and time in quan-

tum mechanics. Certain asymmetry is also present in classical mechanics and

field theory. The fundamental equations are hyperbolic, the initial conditions

(Cauchy’s data) are data “at a given time”. But in quantum mechanics time

is also related to specifically quantum–mechanical problem of “measurement”.
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Measurement’s are usually considered as “instantaneous in time”. We are mea-

suring physical quantities at different times, and we are interested in “time

evolution” of these quantities. Yet the question of “how to measure time in

quantum mechanics?” is asked by physicists and philosophers again and again.

[3, 4]

1.1. But which time?

... there is some ur-theory, likely a phenomenological one, which

unifies non-relativistic quantum theory and non-quantum relativity

theory. ... some intermediate unified theory between quantum grav-

ity and what we have now and that this theory in certain limits

produces non-relativistic quantum theory and non-quantum relativ-

ity theory.

Diosi and Lukacs [5, 6] then suggested the need to create a unified theory of

Newtonian Quantum Mechanics and Gravity.

An elegant, pure geometrical, formulation of Newton–Galilei general rela-

tivistic quantum mechanics was pioneered by Marco Modugno (with the partic-

ipation of the present author) in 1993 [7, 8].

1.2. Geometry of Galilei-Newton relativity

Space–time, in this formulation, is a refined version of that of Galilei and of

Newton, i.e. space–time with absolute simultaneity. In particular, four dimen-

sional space–time manifold E of events is fibrated over one–dimensional time

B. The fibers Et of E are three–dimensional Riemannian manifolds, while the

basis B is an affine space over R. Coordinate system xµ = (x0, xi), i = 1, 2, 3 ,

on E are adapted to the fibration. In adapted coordinates any two events with

the same coordinate x0 are simultaneous, i.e. they are in the same fibre of E.

Coordinate transformations between any two adapted coordinate systems
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are of the form:

x0
′

= x0 + const,

xi
′

= xi
′ (
x0, xi

)
. (1)

Let β be the time form:

β = dx0.

In adapted coordinates we have β0 = 1, βi = 0. E is equipped with a

contravariant degenerate metric tensor which, in adapted coordinates, takes

the form 
0 0 0 0

0 g11 g12 g13

0 g21 g22 g23

0 g31 g32 g33

 , (2)

where gij , (i, j = 1, 2, 3) is of signature (+ + +). We denote by gij the inverse

3 × 3 matrix. It defines Riemannian metric on the three–dimensional fibers of

E.

Lest us consider torsion–free affine connections Γ in E, together with the

associated covariant derivative ∇, that preserves gµν and β:

(∇g)µν = 0, (3)

(∇β)µ = 0. (4)

What is the freedom in choosing such a connection?

The condition (4) is equivalent to the conditions

Γ0
µν = 0 (5)

on the connection coefficients. Let us introduce the notation

Γµν,i = gijΓ
j
µν . (6)

Then the condition (3) is equivalent to the equations:

∂µgij = Γµi,j + Γµj,i. (7)
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Now, because of the assumed zero torsion, the space part of the connection can

be expressed in terms of the three-dimensional space metric in the Levi-Civita

form:

Γij,k =
1

2
(∂igjk + ∂jgik − ∂kgij) . (8)

From the remaining equations:

∂0gij = Γ0i,j + Γ0j,i (9)

we find the symmetric part of Γ0i,j is equal to 1
2∂0gij , otherwise the connection

is undetermined. We can write it as

Γi0,j =
1

2
(∂0gij +Φij) , (10)

Γ00,j = Φ0j , (11)

where Φµν = −Φµν is an arbitrary antisymmetric object. It is then natural to

introduce quantities E,B defined by

Ei = Φ0i, Bi = ϵijkΦk, (i = 1, 2, 3). (12)

Assuming that the fibers of the space–time manifold E are flat, that is in some

adapted coordinates we have gij = δij , and performing special Galilei transfor-

mation:

x′ = x− vt (13)

t′ = t, (14)

we easily find that

E′ = E+ v ×B (15)

B′ = B. (16)

There are now two ways of interpreting these degrees of freedom in the connec-

tion. First we may notice that the transformation laws 16 are the same as in the

‘electric limit” of Galilean electromagnetism [9, 10]. Therefore it is tempting to

interpret E and B as proportional to the electric and magnetic fields in Galilean
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electrodynamics. But such an interpretation would force us to choose different

connections for particles with different ratios of e/m. There is however a dif-

ferent interpretation: E and B belong to the universal force of gravitation in

gravitoelectromagnetism, as it is discussed, for instance, in [11, 12]. This second

interpretation seems to be more natural.

Let J1E be the affine jet bundle J1E
π−→ E. 2 We can parametrize J1E by

coordinates (xµ, yi). J1E carries the canonical form θ given by

θi = dxi − yi dx0. (17)

The connection Γ induces, in a natural way, an affine connection in J1E,

therefore it defines a one–form νΓ on J1E with values in the vector bundle V E

of vectors tangent to the fibers of E. Therefore we can define the two–form Ω

on J1E :

Ω = gmn ν
m
Γ ∧ θn. (18)

One can then show that the form Ω is closed, i.e. that dΩ = 0, if and only if

the curvature tensor R of Γ satisfies additional requirements:

Rµ σ
ν ρ = Rσ µ

ρ ν , (19)

where

Rµ σ
ν ρ = gµλR σ

λν ρ. (20)

This happens to be equivalent to the condition on Φ of being closed:

∂[µΦνσ] = 0. (21)

It can be verified by a direct calculation that the condition (21) is covariant

with respect to the transformations (1) between adapted frames even though

Φµν is not a tensor.

2Jets at x ∈ E can be, in this case, identified with tangent vectors yµ = (y0, yi) at x for

which y0 = 1.
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1.3. Quantization

With space–time geometry encoded as above quantization procedure is straight-

forward. The arena for quantization is a principal U(1) bundle Q over E and

its pullback Q† to J1E. Among principal connections on Q† there is a special

class of connections, namely those whose connection forms vanish on vectors

tangent to the fibers of Q† → Q. Quantization is accomplished by selecting a

connection ω in this class for which the curvature form is iΩ. In coordinates

such a connection is of the form:

ω = i (dϕ+ aµdx
µ) , (22)

where 0 ≤ ϕ ≤ 2π parametrizes the fibres of Q,

a0 = − 1
2gijy

iyj +A0,

ai = gijy
j +Ai,

and Aν = (A0, Ai) a local potential for Φ :

Φµν = ∂µAν − ∂ν Aµ. (23)

Schrödinger’s equation can then be interpreted in terms of the parallel trans-

port (over time) with respect to the induced connection in the bundle of Hilbert

spaces over the fibers of E. Details and extensions can be found in the compre-

hensive review [13] and references therein.

1.4. Time of events

The above geometrical formulation of quantization is well adapted for de-

scribing the continuous evolution in time of wave functions and expectation

values of physical observables. But already in 1913, that is long before quan-

tum theory as we know it today was invented, Niels Bohr suggested that there

are discontinuous transitions between stationary states of electrons in atoms -

in other words: quantum jumps. While we can’t see electrons jumping from one

orbit to another, we can register photons emitted as a result of these jumps.
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These registration acts are events, and we can record their time. Therefore in

quantum theory events, together with their timing, are important observational

data. Events are being recorded also in nuclear decays. Yet timing of the events

was escaping precise quantum mechanical formulation, mainly because in the

mathematical formalism of quantum mechanics time is a parameter, not an op-

erator. There are good reasons for this: we never measure time, we measure

time of events. But in order to do it, we need to specify first what kind of

events we are looking at. They should be physical events of some kind, not just

abstract mathematical points of space–time continuum.

In 1972 Eugene P. Wigner addressed this problem in his paper “On the

Time-Energy Uncertainty” Relation” [14]. There he introduced the concept of

time of arrival at a state. However Wigner did not solve the problem, and, after

careful examination, we can easily notice mathematical and logical errors in his

expressions.3.

In 1974 two papers appeared addressing the problem of measuring time of

events in quantum theory.

One possible solution to this annoying problem was proposed by V. S.

Olkhovsky, E. Recami and A. J. Gerasimchuk in their 1974 paper “Time Oper-

ator in Quantum Mechanics” [16], where the authors wrote:

“... The fact that the operator ¾time¿ seems to have peculiar

(even if not exceptional) features( ∗) led to its unjustified neglect. As

a consequence, the Heisenberg uncertainty correlations for energy

and time got particular obscurity as compared to other ones.

( ∗) We shall see that it does not admit a spectral decomposition, in

nonrelativistic quantum mechanics ...”

While this approach, via Hermitian but non–selfadjoint operators, is still being

actively pursued (see e.g. the review article [17]), it is not the approach I will

3But, quoting from Irving John Good, a British brilliant mathematician, who worked as

a cryptologist with Alan Turing: “It is often better to be stimulating and wrong than boring

and right.” [15, p. 1]
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elaborate upon in the present paper.

1.5. Kijowski appears in time

In the same year, 1974, another classical paper on the subject of time in

quantum mechanics was published by J. Kijowski [18]. Let us demonstrate the

essence of Kijowski’s time operator on a simple toy model: free Schrödinger’s

particle in one space dimension. Using atomic units in which mass of the particle

m = 1 and Planck’s constant ~ = 1 Schrödinger’s equation reads:

Ψ ∈ L2(R), i∂Ψt/∂t = HΨt, (24)

with

(HΨ)(x) = − 1

2

∂2Ψ(x)

∂x2
. (25)

Then H = H∗, and the equation has a formal solution

Ψt = eiHtΨ0, ||Ψt|| = const. (26)

Kijowski considered the event of particle crossing the point x = 0, and proposed

a solution that he also proved to be a unique one under a number of natural

geometrical conditions. Kijowski’s solution goes as follows.

Let ψ̃(k) be the Fourier transform of Ψ0(x) :

ψ̃(k) =
1√
2π

∫ ∞

−∞
Ψ0(x e

ikx dx. (27)

Define:

ψ+(τ) =
1√
2π

∫ ∞

0

√
k ψ̃(k) e

−ik2τ
2 dk, (28)

ψ−(τ) =
1√
2π

∫ 0

−∞

√
−k ψ̃(k) e ik2τ

2 dk, (29)

Then the probability of the event of crossing x = 0 at time τ is given by the

formula:

p(τ) = |ψ+(τ)|2 + |ψ−(τ)|2. (30)

The two terms in the above formula correspond to particles arriving at x = 0

from the left and from the right respectively.
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1.5.1. Example: free Gaussian packet

Consider the following Gaussian wave packet

Ψ(0, x) =
4

√
2

π
e−(x+4)2+4ix+16i (31)

It is centered at x = −4 and its center moves with velocity v = 4 to the right.

We can write the solution of the free Schrödinger’s equation with this initial

condition explicitly:

Ψ(t, x) =

4

√
2
π exp

(
−8t+i(x+4)2+4(x+4)

2t−i

)
√
1 + 2it

. (32)

The center of this wave packet moves at time t = 1 to the origin x = 0. (Fig.

1). Its Fourier transform Ψ̃ defined by

0.0

0.2

0.4

0.6

0.8

1.0

|Ψ
(t
,
x
)|

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

Time evolution of a free Gaussian wave packet

t = -1.0
t = 0
t = 1.0
t = 2.0

Figure 1: Free motion of the Gaussian wave packet Ψ(t, x).

Ψ̃(t, k) =
1

2π

∫ ∞

−∞
Ψ(t, x)e−ikx dx (33)

keeps its shape constant in time. Only its phase (not shown in Fig. 2) os-

cillates. For a Gaussian wave packet Kijowski’s amplitudes ψ+(τ) and ψ−(τ)

can be computed explicitly in terms of Bessel functions. However these explicit

expressions are rather complicated and do not give us any insight into their

behavior. It is better to represent them graphically. From Figs. 3, 4 one can
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Figure 2: Fourier transformed evolution Ψ̃(t, k)

0.0

0.5

1.0

1.5

2.0

|ψ
+
(τ
)|
2

0 1 2 3 4 5 6 7 8 9 10

τ

Kijowski’s time of arrival probability

Figure 3: Right mover time of arrival distribution

see that ψ+(τ) behaves in an expected way: it has its maximum around τ = 1.

Indeed, it would take τ = 1 for a classical particle with velocity v = 4 to move

from x = −4 to x = 0. The probability distribution from ψ−(τ) is so small that

it can be neglected. It mainly comes from the part of the Gaussian distribution

that is on the right of x = 0 and has negative momentum component.
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Figure 4: Left mover time of arrival distribution

1.5.2. Critics and replies

Kijowski proved that his “Time of Arrival” is unique under certain well

defined mathematical conditions. His solution, though generally accepted as

mathematically sound, was criticised on other grounds. Grot, Tate and Rovelli

[19] criticised Kijowski’s solution in these words:

“Kijowski [18] obtained a probability distribution, but not on the

usual Hilbert space; thus the interpretation of the wave function in

terms of familiar quantities is obscure.”

Delgado and Muga [20] repeated much the same:

“Our results turn out to be similar to those previously obtained

by Kijowski [18]. However, the approach by Kijowski was based on

the definition of a nonconventional wave function ...”

Kijowski countered in [21]:

“... I want to stress that the classification nonconventional wave

function...whose relation to the conventional wave function is un-
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clear could only be conceived by somebody who did not read my paper

carefully ...”

More serious objections came from Bogdan Mielnik [22]4, who summarized the

situation as follows:

“It thus seems, that the axioms about the time of arrival omit

quite a number of physical aspects. It brings little comfort that they

give a unique probability. On the contrary, it brings new difficulties.”

Kijowski, in reply [24], essentially agreed with Mielnik:

“... My construction of “arrival time” is indeed mathemat-

ically unique and final within the conceptual framework of the

standard interpretation of Quantum Mechanics. But I always consid-

ered it as an argument for further analysis of the conceptual frame-

work of quantum theory. ...

Unfortunately at the moment there is no measurement theory, which

could replace this (naive and very unsatisfactory!) picture. I wish

Bogdan Mielnik to find one.”

Apart from the seriously motivated objection raised by Mielnik, there is also

another issue here, related to the subject of this paper: Kijowski’s “time of

arrival” heavily depends on the fact that we are dealing with free propagation

in flat space and does not seem to be directly applicable in the presence of ex-

ternal potentials - c.f. [25, p. 10] and references therein. Moreover it essentially

depends on Fourier transform, and Fourier transforms do not translate easily

from flat spaces to curved manifolds. Therefore it is rather improbable that Ki-

jowski’s time of arrival can be adjusted to a geometrical framework of quantum

mechanics in general Galilei-Newton space-times outlined in section 1.2.

If so, what other options do we have? [26] [17]

4In 1994 Mielnik stated and analyzed a more general “Screen Problem” in Quantum Me-

chanics [23].
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2. Event Enhanced Quantum Theory (EEQT): Time of Events

True “geometrical quantization” must join two branches of mathematics:

geometry and probability. While geometrical part is well developed, the proba-

bilistic part is, till now, mostly neglected. Quantum theory is a theory of mea-

surements, and measurements are irreversible processes that do not necessarily

destroy objects. Quantum mechanics, therefore, must include irreversibility.

Quoting from Ilya Prigogine [27]:

“I believe that we are at an important turning point in the history

of science. We have come to the end of the road paved by Galileo

and Newton, which presented us with an image of time–reversible,

deterministic universe. We now see the erosion of determinism and

the emergence of a new formulation of laws of Physics.”

In this section I will propose a way of including irreversibility and measurements

into a geometrical formulation of quantum mechanics in a Galilei-Newton space–

time. My suggestion is based on “Event Enhanced Quantum Theory” (EEQT)

described, for instance, in [28].

2.1. Main concepts of EEQT

EEQT preserves a general algebraic scheme of quantum mechanics (Hilbert

spaces, algebras of operators, states), but without its a priori physical interpre-

tation. Physical interpretation follows there from dynamics. Dynamics is irre-

versible. It can be described mathematically at two different (but equivalent)

levels. Either probabilistically, on the level of single systems, or, statistically,

on the level of ensembles of systems. For single systems the Schrödinger equa-

tion is modified if measurements are taking place. We have stochastic quantum

jumps between periods of a continuous evolution. Jumps are accompanied by

changing pointer positions on measuring devices. This description requires the

machinery of stochastic process and it does not constitute an easy entry point

for geometrization.
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The alternative description, on the statistical ensemble level, along the ideas

championed by Ilya Prigogine, requires, I believe, only adding to the present

repertoire of geometrical tools, a few other tools that have already been devel-

oped in differential geometry, although for a different reason.

2.2. Time of arrival according to EEQT

In EEQT a detector is characterized by a sensitivity parameter κ > 0. Here

let us compare time of arrival obtained form EEQT with that of Kijowski. With

the same configuration as in section 1.5.1, and with the idealized Dirac’s delta

detector at x = 0, using the formulas from Ref. [26] (cf. also [29, 30]), we obtain

(numerically) probability distributions shown in Fig. 5: These are unnormalized
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t

Unnormalized time of arrival probability densities

κ = 64.0
κ = 32.0
κ = 16.0
κ = 8.0
κ = 4.0
κ = 1.0

Figure 5: Time of arrival according to EEQT.

probabilities - the probability P (∞) that the particle will be detected in finite

time is smaller than one. Some particles (wave packets) will pass the screen

without being detected, some will be reflected without triggering the detector.

The value of P (∞) depends on the sensitivity parameter κ, as can be seen in Fig.

6. It is then natural to normalize the probability curves - they will then represent

the probability curves of those particle only that trigger a detection event. The
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Figure 6: Total probability of detection.

normalized probability densities are show in Fig. 7. It can be seen form Fig.
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Kijowski

Figure 7: Normalized arrival times for different κ.

6 that there is an optimal value of κ for which P (∞) ≈ 0.5. This value, for

our Dirac delta detector, happens to be (numerically) twice the velocity of the
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Gaussian wave packet, in our case κ = 8.0. Comparing now the optimal EEQT
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t

Time of arrival: Optimal EEQT vs. Kijowski

κ = 8.0
Kijowski

Figure 8: Is the difference between the two curves only due to the numerical approximation?

time of arrival normalized probability curve with that of Kijowski’s we can see

that they almost indistinguishable. Perhaps they are exactly the same, and the

small difference shown in Fig. 8 is the results of numerical approximation? This

question needs further research.

2.3. Geometrization of the Liouville equation?

Quantum theory is a statistical theory, therefore certain elements of prob-

abilistic machinery is necessary whenever models are to be compared with ex-

periment. Usually this is done via Born’s interpretation of quantum probability

amplitudes, but Born’s interpretation is an additional axiom that does not fol-

low from the dynamics. Also, if we want to take into account measurement

processes, additional problems appear. Ilya Prigogine advocated what he called

a “Unified Formulation of Quantum Theory” that would take into account,

from the very beginning, the inherent irreversibility of event creation which is

the basis of any observation, in particular observation of time of arrival.

Following Prigogine’s ideas the fundamental mathematical object is the
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“density matrix” and the fundamental differential equation is the Liouville equa-

tion. Schrödinger’s equation does not describe quantum jumps, one has to use a

separate stochastic mechanism for that. But Liouville’s equation can take into

account the presence of measuring devices. It is a differential equation, and

it should be possible to give a geometric meaning for Liouville’s equation in a

general Galilei-Newton geometrical background. I will now provide few ideas

about how this can be done.

2.3.1. Liouville’s equation

In the standard flat space formulation of quantum mechanics a particle de-

tector is described by an operator F, which can explicitly depend on time t. In

the simplest case F is an operator of multiplication by a non-negative function

of space point:

(FtΨ)(x) = ft(x)Ψ(x). (34)

Quantum mechanical statistical state is described by a “density matrix” (or

“mixed state”) ρt. rho, at each time t, is a positive operator of trace one. The

relation between wave functions and density matrices is such that to each wave

function (quantum state) we can associate a density matrix - the orthogonal

projection operator onto this state. Such density matrices describe pure states.

In general, however, a density matrix does not correspond to a pure state.

Without any measurements, when the dynamics is reversible and described by

a self–adjoint Hamilton operator H,5 Schrödinger’s equation can be equivalently

written in terms of density matrices as follows:

dρt
dt

= −i[H, ρt]. (35)

Eq. (35) is known the Liouville form of the quantum mechanical state evolution.

One can easily check that such an evolution preservers the purity of states. It is

completely equivalent to the Schrödinger equation except for one fact: quantum

mechanical effects such as, for instance, Aharanov-Bohm effect, or even simple

5For simplicity let us assume that H does not depend explicitly on time
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double slit experiment, are harder to “explain” in the density matrix formalism,

when the phase of the wave function is not explicitly represented. Feynman’s

method of superposition of amplitudes leads much easier results.

When there are measuring devices around, quantum dynamics becomes irre-

versible. Time evolution is no longer given in the form (35), pure states evolve,

in general, into mixed states. For the case of one detector described by an oper-

ator Ft (not necessarily Hermitian) the Liouville equation has additional terms.

It takes the form

dρ

dt
= −i[H, ρ] + F †

t ρFt −
1

2
{F †

t Ft, ρ}, (36)

where the curly bracket stands for the anticommutator. One can easily check

that this equation preserves both positivity and trace of ρ. It is this form of the

Liouville equation that I propose as a good candidate for geometrization.6

2.3.2. Geometrization of density matrices

The Hamiltonian operator and the detector operator are both local, therefore

they can be rather easily expressed in terms of local geometrical objects. It is

not so with a general density density matrix. Assuming however that fibers of

the Galilei–Newton space–time E are compact Riemannian manifolds, we can

assume that ρ at any givenen time t is an integral operator defined by a kernel

function ρ(x, y) :

(ρΨ)(x) =

∫
Et

ρ(x, y)Ψ(y)dV (y), (37)

where dV is the volume form of the Riemannian metric on the fibre. In such

a form it should be now possible to express the dissipative quantum mechanics

encoded in Eq. (36) in purely geometrical terms.

Of course we will have to deal now with two–point geometrical objects, but

the path here was marked out long ago. A. Einstein and V. Bargmann discussed

6In the case of the Dirac delta counter located at x = 0, discussed in section 2.2, F is an

“improper” operator of “multiplication” by
√
κδ(x) and f2 is the “multiplication” by κδ(x).

Of course, as it stands, it does not make sense mathematically, but it does make sense with a

proper approach (limiting procedure) - the results are finite, as a physicist would expect.
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two–point tensor fields in Ref. [31, 32], while J. L. Synge [33, Ch. 2] derived

many important properties of the two–point “world function” in his formulation

of General Relativity Theory.

3. Conclusions

Paraphrasing J. Kijowski Unfortunately at the moment there is no measure-

ment theory, which could replace this (naive and very unsatisfactory!) picture.

I wish Bogdan Mielnik to find one.” I would rather say:

Fortunately at the moment there are measurement
theories which could replace this naive and very unsatis-
factory (orthodox) picture. I wish more mathematicians
and mathematical physicists would get involved in this
research.
Geometry is pretty. Probability, on the other hand, is ex-
citing, and it shows the way towards even prettier (con-
formal) geometry, and more satisfactory physics.
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